Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226060744> ?p ?o ?g. }
- W4226060744 endingPage "549" @default.
- W4226060744 startingPage "535" @default.
- W4226060744 abstract "The use of binary decision diagrams (BDDs) has proliferated in numerous fields. When a system criterion is formulated in form of a Boolean function, its BDD is constructed. Each node in the BDD is further mapped into another form to be exploited in the system analysis. However, the cost of the resultant mapping form is directly related to the BDD size which can be effectively reduced through applying proper variable reordering followed by applying reduction rules that preserve the fidelity of the BDD in correctly representing the input Boolean function. Although several algorithms have been proposed in the literature to find the optimal order of variables in the BDD, the scalability of such algorithms is a serious barrier when it comes to complex systems with exponential explosion in the possible number of orders in the search space. Furthermore, solely exploring the search space in BDD reordering is not sufficient since better permutations might be obtained with slight tuning of the candidate solutions. Thus, a sufficient degree of equilibrium between exploration and exploitation should be preserved during the evolution of the reordering algorithm. In this article, we propose a BDD optimizer driven by either genetic algorithm (GA) or swarm engines. The proposed GA-based BDD reordering optimizer iteratively processes an essentially large population with a randomized mixing of low destructive crossover/mutation operators. The proposed swarm-based optimizer, on the other hand, maps a vector of real numbers into a permutation to further construct its companion BDD. The generation of the next vector is guided by recent parameter and parameter-less swarm algorithms that are armed with effective mechanisms to simultaneously conduct exploration and exploitation. Experimental results show that our proposed optimizer effectively reduces the resultant BDD size for input Boolean functions with almost linear computational complexity. Furthermore, it has been found that exploiting recent swarm optimizers with spiral movement in BDD reordering problem can outperform GA for large scale Boolean functions. Finally, as a real-world application, our proposed algorithm is applied to reversible logic synthesis to show the achieved reduction in the quantum cost (QC) associated with BDD-based synthesis." @default.
- W4226060744 created "2022-05-05" @default.
- W4226060744 creator A5038243097 @default.
- W4226060744 creator A5078386379 @default.
- W4226060744 creator A5081466423 @default.
- W4226060744 date "2023-06-01" @default.
- W4226060744 modified "2023-09-29" @default.
- W4226060744 title "A Genetic Algorithm (GA) and Swarm-Based Binary Decision Diagram (BDD) Reordering Optimizer Reinforced With Recent Operators" @default.
- W4226060744 cites W1486199311 @default.
- W4226060744 cites W1868653600 @default.
- W4226060744 cites W1976744965 @default.
- W4226060744 cites W1984397182 @default.
- W4226060744 cites W1985992893 @default.
- W4226060744 cites W1994143452 @default.
- W4226060744 cites W1995688410 @default.
- W4226060744 cites W2003751475 @default.
- W4226060744 cites W2010935983 @default.
- W4226060744 cites W2016806954 @default.
- W4226060744 cites W2053894238 @default.
- W4226060744 cites W2061438946 @default.
- W4226060744 cites W2084225608 @default.
- W4226060744 cites W2101677491 @default.
- W4226060744 cites W2107686474 @default.
- W4226060744 cites W2122701426 @default.
- W4226060744 cites W2126695615 @default.
- W4226060744 cites W2128051365 @default.
- W4226060744 cites W2130753923 @default.
- W4226060744 cites W2140039879 @default.
- W4226060744 cites W2141472133 @default.
- W4226060744 cites W2144420897 @default.
- W4226060744 cites W2146607599 @default.
- W4226060744 cites W2152325732 @default.
- W4226060744 cites W2154682956 @default.
- W4226060744 cites W2154943049 @default.
- W4226060744 cites W2290883490 @default.
- W4226060744 cites W2345286948 @default.
- W4226060744 cites W2497506019 @default.
- W4226060744 cites W2548265241 @default.
- W4226060744 cites W2573137292 @default.
- W4226060744 cites W2607915569 @default.
- W4226060744 cites W2738900493 @default.
- W4226060744 cites W2768055417 @default.
- W4226060744 cites W2830592823 @default.
- W4226060744 cites W2897177582 @default.
- W4226060744 cites W2914717758 @default.
- W4226060744 cites W2915817060 @default.
- W4226060744 cites W2919979744 @default.
- W4226060744 cites W2921612866 @default.
- W4226060744 cites W2921893399 @default.
- W4226060744 cites W2962182762 @default.
- W4226060744 cites W2965819804 @default.
- W4226060744 cites W2968995513 @default.
- W4226060744 cites W2993471286 @default.
- W4226060744 cites W3022343876 @default.
- W4226060744 cites W3027719516 @default.
- W4226060744 cites W3035421035 @default.
- W4226060744 cites W3036567335 @default.
- W4226060744 cites W3040188519 @default.
- W4226060744 cites W3049636381 @default.
- W4226060744 cites W3101552411 @default.
- W4226060744 cites W3104621635 @default.
- W4226060744 cites W3142504807 @default.
- W4226060744 cites W3168446041 @default.
- W4226060744 cites W4210551624 @default.
- W4226060744 cites W4213350534 @default.
- W4226060744 cites W4252439377 @default.
- W4226060744 cites W4255413535 @default.
- W4226060744 cites W4378744510 @default.
- W4226060744 cites W883434633 @default.
- W4226060744 doi "https://doi.org/10.1109/tevc.2022.3170212" @default.
- W4226060744 hasPublicationYear "2023" @default.
- W4226060744 type Work @default.
- W4226060744 citedByCount "3" @default.
- W4226060744 countsByYear W42260607442022 @default.
- W4226060744 countsByYear W42260607442023 @default.
- W4226060744 crossrefType "journal-article" @default.
- W4226060744 hasAuthorship W4226060744A5038243097 @default.
- W4226060744 hasAuthorship W4226060744A5078386379 @default.
- W4226060744 hasAuthorship W4226060744A5081466423 @default.
- W4226060744 hasConcept C11413529 @default.
- W4226060744 hasConcept C121332964 @default.
- W4226060744 hasConcept C122507166 @default.
- W4226060744 hasConcept C126255220 @default.
- W4226060744 hasConcept C154945302 @default.
- W4226060744 hasConcept C159149176 @default.
- W4226060744 hasConcept C187455244 @default.
- W4226060744 hasConcept C21308566 @default.
- W4226060744 hasConcept C24890656 @default.
- W4226060744 hasConcept C3309909 @default.
- W4226060744 hasConcept C33923547 @default.
- W4226060744 hasConcept C41008148 @default.
- W4226060744 hasConcept C8880873 @default.
- W4226060744 hasConceptScore W4226060744C11413529 @default.
- W4226060744 hasConceptScore W4226060744C121332964 @default.
- W4226060744 hasConceptScore W4226060744C122507166 @default.
- W4226060744 hasConceptScore W4226060744C126255220 @default.
- W4226060744 hasConceptScore W4226060744C154945302 @default.
- W4226060744 hasConceptScore W4226060744C159149176 @default.