Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226072937> ?p ?o ?g. }
- W4226072937 endingPage "162" @default.
- W4226072937 startingPage "157" @default.
- W4226072937 abstract "The aim of this study was to investigate the feasibility and impact of a novel deep learning superresolution algorithm tailored to partial Fourier allowing retrospectively theoretical acquisition time reduction in 1.5 T T1-weighted gradient echo imaging of the abdomen.Fifty consecutive patients who underwent a 1.5 T contrast-enhanced magnetic resonance imaging examination of the abdomen between April and May 2021 were included in this retrospective study. After acquisition of a conventional T1-weighted volumetric interpolated breath-hold examination using Dixon for water-fat separation (VIBEStd), the acquired data were reprocessed including a superresolution algorithm that was optimized for partial Fourier acquisitions (VIBESR). To accelerate theoretically the acquisition process, a more aggressive partial Fourier setting was applied in VIBESR reconstructions practically corresponding to a shorter acquisition for the data included in the retrospective reconstruction. Precontrast, dynamic contrast-enhanced, and postcontrast data sets were processed. Image analysis was performed by 2 radiologists independently in a blinded random order without access to clinical data regarding the following criteria using a Likert scale ranging from 1 to 4 with 4 being the best: noise levels, sharpness and contrast of vessels, sharpness and contrast of organs and lymph nodes, overall image quality, diagnostic confidence, and lesion conspicuity.Wilcoxon signed rank test for paired data was applied to test for significance.Mean patient age was 61 ± 14 years. Mean acquisition time for the conventional VIBEStd sequence was 15 ± 1 seconds versus theoretical 13 ± 1 seconds of acquired data used for the VIBESR reconstruction. Noise levels were evaluated to be better in VIBESR with a median of 4 (4-4) versus a median of 3 (3-3) in VIBEStd by both readers (P < 0.001). Sharpness and contrast of vessels as well as organs and lymph nodes were also evaluated to be superior in VIBESR compared with VIBEStd with a median of 4 (4-4) versus a median of 3 (3-3) (P < 0.001). Diagnostic confidence was also rated superior in VIBESR with a median of 4 (4-4) versus a median of 3.5 (3-4) in VIBEStd by reader 1 and with a median of 4 (4-4) for VIBESR and a median of 4 (4-4) for VIBEStd by reader 2 (both P < 0.001).Image enhancement using deep learning-based superresolution tailored to partial Fourier acquisitions of T1-weighted gradient echo imaging of the abdomen provides improved image quality and diagnostic confidence in combination with more aggressive partial Fourier settings leading to shorter scan time." @default.
- W4226072937 created "2022-05-05" @default.
- W4226072937 creator A5014445043 @default.
- W4226072937 creator A5024615451 @default.
- W4226072937 creator A5037057145 @default.
- W4226072937 creator A5037528049 @default.
- W4226072937 creator A5038844371 @default.
- W4226072937 creator A5045060082 @default.
- W4226072937 creator A5051463168 @default.
- W4226072937 creator A5063181665 @default.
- W4226072937 date "2021-09-10" @default.
- W4226072937 modified "2023-10-16" @default.
- W4226072937 title "Analysis of a Deep Learning-Based Superresolution Algorithm Tailored to Partial Fourier Gradient Echo Sequences of the Abdomen at 1.5 T" @default.
- W4226072937 cites W1987346425 @default.
- W4226072937 cites W2006330194 @default.
- W4226072937 cites W2073266250 @default.
- W4226072937 cites W2107061083 @default.
- W4226072937 cites W2115023327 @default.
- W4226072937 cites W2120147144 @default.
- W4226072937 cites W2138327032 @default.
- W4226072937 cites W2162304928 @default.
- W4226072937 cites W2164777277 @default.
- W4226072937 cites W2493683088 @default.
- W4226072937 cites W2567465595 @default.
- W4226072937 cites W2618718534 @default.
- W4226072937 cites W2622192233 @default.
- W4226072937 cites W2793323194 @default.
- W4226072937 cites W2794977498 @default.
- W4226072937 cites W2888552388 @default.
- W4226072937 cites W2894914686 @default.
- W4226072937 cites W2895992674 @default.
- W4226072937 cites W2963300950 @default.
- W4226072937 cites W2964118565 @default.
- W4226072937 cites W3041796785 @default.
- W4226072937 cites W3103077875 @default.
- W4226072937 cites W3103235905 @default.
- W4226072937 cites W3115026658 @default.
- W4226072937 cites W3128667597 @default.
- W4226072937 cites W3130894550 @default.
- W4226072937 cites W3131554255 @default.
- W4226072937 cites W3132466875 @default.
- W4226072937 cites W3143374172 @default.
- W4226072937 cites W3148118841 @default.
- W4226072937 cites W3186750081 @default.
- W4226072937 doi "https://doi.org/10.1097/rli.0000000000000825" @default.
- W4226072937 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34510101" @default.
- W4226072937 hasPublicationYear "2021" @default.
- W4226072937 type Work @default.
- W4226072937 citedByCount "15" @default.
- W4226072937 countsByYear W42260729372021 @default.
- W4226072937 countsByYear W42260729372022 @default.
- W4226072937 countsByYear W42260729372023 @default.
- W4226072937 crossrefType "journal-article" @default.
- W4226072937 hasAuthorship W4226072937A5014445043 @default.
- W4226072937 hasAuthorship W4226072937A5024615451 @default.
- W4226072937 hasAuthorship W4226072937A5037057145 @default.
- W4226072937 hasAuthorship W4226072937A5037528049 @default.
- W4226072937 hasAuthorship W4226072937A5038844371 @default.
- W4226072937 hasAuthorship W4226072937A5045060082 @default.
- W4226072937 hasAuthorship W4226072937A5051463168 @default.
- W4226072937 hasAuthorship W4226072937A5063181665 @default.
- W4226072937 hasConcept C102519508 @default.
- W4226072937 hasConcept C11413529 @default.
- W4226072937 hasConcept C115961682 @default.
- W4226072937 hasConcept C126322002 @default.
- W4226072937 hasConcept C126838900 @default.
- W4226072937 hasConcept C12868164 @default.
- W4226072937 hasConcept C134306372 @default.
- W4226072937 hasConcept C141379421 @default.
- W4226072937 hasConcept C143409427 @default.
- W4226072937 hasConcept C154945302 @default.
- W4226072937 hasConcept C206041023 @default.
- W4226072937 hasConcept C2776502983 @default.
- W4226072937 hasConcept C2989005 @default.
- W4226072937 hasConcept C33923547 @default.
- W4226072937 hasConcept C41008148 @default.
- W4226072937 hasConcept C55020928 @default.
- W4226072937 hasConcept C71924100 @default.
- W4226072937 hasConceptScore W4226072937C102519508 @default.
- W4226072937 hasConceptScore W4226072937C11413529 @default.
- W4226072937 hasConceptScore W4226072937C115961682 @default.
- W4226072937 hasConceptScore W4226072937C126322002 @default.
- W4226072937 hasConceptScore W4226072937C126838900 @default.
- W4226072937 hasConceptScore W4226072937C12868164 @default.
- W4226072937 hasConceptScore W4226072937C134306372 @default.
- W4226072937 hasConceptScore W4226072937C141379421 @default.
- W4226072937 hasConceptScore W4226072937C143409427 @default.
- W4226072937 hasConceptScore W4226072937C154945302 @default.
- W4226072937 hasConceptScore W4226072937C206041023 @default.
- W4226072937 hasConceptScore W4226072937C2776502983 @default.
- W4226072937 hasConceptScore W4226072937C2989005 @default.
- W4226072937 hasConceptScore W4226072937C33923547 @default.
- W4226072937 hasConceptScore W4226072937C41008148 @default.
- W4226072937 hasConceptScore W4226072937C55020928 @default.
- W4226072937 hasConceptScore W4226072937C71924100 @default.
- W4226072937 hasIssue "3" @default.
- W4226072937 hasLocation W42260729371 @default.
- W4226072937 hasLocation W42260729372 @default.