Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226077881> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W4226077881 abstract "Glomeruli are clusters of capillaries that are responsible for filtering the blood to form urine, thus excreting waste and maintaining fluid and acid-base balance. The detection and characterization of glomeruli are key elements in diagnostic and experimental nephropathology. Although the field of machine vision has already advanced the detection, classification, and prognostication of diseases in the specialties of radiology and oncology, renal pathology is just entering the digital imaging era. However, developing quantitative machine learning approaches (e.g., self-supervised deep learning) that characterize glomerular lesions (e.g., global glomerulosclerosis (GGS)) from whole slide images (WSIs) typically requires large-scale heterogeneous images, which is resource extensive for individual labs. In this study, we assess the feasibility of leveraging fine-grained GGS characterization via large-scale web image mining (e.g., from journals, search engines, websites) and self-supervised deep learning. Three types of GGS were assessed-solidified (S-GGS, associated with hypertension-related injury), disappearing (D-GGS, a further end result of the SGGS becoming contiguous with fibrotic interstitium), and obsolescent (O-GGS, nonspecific GGS increasing with aging). We employed the SimSiam network as the baseline method of self-supervised contrastive learning. By deploying our previously developed compound figure separation approach, we provided 30,000 unannotated glomerular images via web image mining to train the SimSiam network. From the results, the GGS fine-grained classification model achieved superior performance compared with baseline methods. The segmentation networks evaluated across six different resolutions" @default.
- W4226077881 created "2022-05-05" @default.
- W4226077881 creator A5016504310 @default.
- W4226077881 creator A5029808849 @default.
- W4226077881 creator A5031318134 @default.
- W4226077881 creator A5037133367 @default.
- W4226077881 creator A5064015426 @default.
- W4226077881 creator A5067191302 @default.
- W4226077881 creator A5069405183 @default.
- W4226077881 creator A5074197453 @default.
- W4226077881 creator A5081514433 @default.
- W4226077881 date "2022-04-04" @default.
- W4226077881 modified "2023-09-24" @default.
- W4226077881 title "Self-supervised learning with large-scale web image mining for characterizing glomerular lesions" @default.
- W4226077881 doi "https://doi.org/10.1117/12.2611903" @default.
- W4226077881 hasPublicationYear "2022" @default.
- W4226077881 type Work @default.
- W4226077881 citedByCount "0" @default.
- W4226077881 crossrefType "proceedings-article" @default.
- W4226077881 hasAuthorship W4226077881A5016504310 @default.
- W4226077881 hasAuthorship W4226077881A5029808849 @default.
- W4226077881 hasAuthorship W4226077881A5031318134 @default.
- W4226077881 hasAuthorship W4226077881A5037133367 @default.
- W4226077881 hasAuthorship W4226077881A5064015426 @default.
- W4226077881 hasAuthorship W4226077881A5067191302 @default.
- W4226077881 hasAuthorship W4226077881A5069405183 @default.
- W4226077881 hasAuthorship W4226077881A5074197453 @default.
- W4226077881 hasAuthorship W4226077881A5081514433 @default.
- W4226077881 hasConcept C108583219 @default.
- W4226077881 hasConcept C119857082 @default.
- W4226077881 hasConcept C121332964 @default.
- W4226077881 hasConcept C153180895 @default.
- W4226077881 hasConcept C154945302 @default.
- W4226077881 hasConcept C2778755073 @default.
- W4226077881 hasConcept C41008148 @default.
- W4226077881 hasConcept C62520636 @default.
- W4226077881 hasConcept C89600930 @default.
- W4226077881 hasConceptScore W4226077881C108583219 @default.
- W4226077881 hasConceptScore W4226077881C119857082 @default.
- W4226077881 hasConceptScore W4226077881C121332964 @default.
- W4226077881 hasConceptScore W4226077881C153180895 @default.
- W4226077881 hasConceptScore W4226077881C154945302 @default.
- W4226077881 hasConceptScore W4226077881C2778755073 @default.
- W4226077881 hasConceptScore W4226077881C41008148 @default.
- W4226077881 hasConceptScore W4226077881C62520636 @default.
- W4226077881 hasConceptScore W4226077881C89600930 @default.
- W4226077881 hasLocation W42260778811 @default.
- W4226077881 hasOpenAccess W4226077881 @default.
- W4226077881 hasPrimaryLocation W42260778811 @default.
- W4226077881 hasRelatedWork W2773120646 @default.
- W4226077881 hasRelatedWork W2790662084 @default.
- W4226077881 hasRelatedWork W2922457425 @default.
- W4226077881 hasRelatedWork W2948658236 @default.
- W4226077881 hasRelatedWork W2960184797 @default.
- W4226077881 hasRelatedWork W4220708658 @default.
- W4226077881 hasRelatedWork W4223943233 @default.
- W4226077881 hasRelatedWork W4225161397 @default.
- W4226077881 hasRelatedWork W4243168368 @default.
- W4226077881 hasRelatedWork W4250304930 @default.
- W4226077881 isParatext "false" @default.
- W4226077881 isRetracted "false" @default.
- W4226077881 workType "article" @default.