Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226078259> ?p ?o ?g. }
- W4226078259 endingPage "3601" @default.
- W4226078259 startingPage "3587" @default.
- W4226078259 abstract "Captured images of outdoor scenes usually exhibit low visibility in cases of severe haze, which interferes with optical imaging and degrades image quality. Most of the existing methods solve the single-image dehazing problem by applying supervised training on paired images; however, in practice, the pairing of real-world images is not viable. Additionally, the processing speed of individual dehazing models is important in practical applications. In this study, a novel unsupervised single image dehazing network (USID-Net) based on disentangled representations without paired training images is explored. Furthermore, considering the trade-off between performance and memory storage, a compact multi-scale feature attention (MFA) module is developed, integrating multi-scale feature representation and attention mechanism to facilitate feature representation. To effectively extract haze information, a mechanism referred to as OctEncoder is designed to include multi-frequency representations that can capture more global information. Extensive experiments show that USID-Net achieves competitive dehazing results and a relatively high processing speed compared to state-of-the-art methods." @default.
- W4226078259 created "2022-05-05" @default.
- W4226078259 creator A5014878249 @default.
- W4226078259 creator A5017562594 @default.
- W4226078259 creator A5065703564 @default.
- W4226078259 creator A5065794169 @default.
- W4226078259 creator A5081411724 @default.
- W4226078259 date "2023-01-01" @default.
- W4226078259 modified "2023-10-18" @default.
- W4226078259 title "USID-Net: Unsupervised Single Image Dehazing Network via Disentangled Representations" @default.
- W4226078259 cites W2028763589 @default.
- W4226078259 cites W2114867966 @default.
- W4226078259 cites W2128254161 @default.
- W4226078259 cites W2156936307 @default.
- W4226078259 cites W2194775991 @default.
- W4226078259 cites W2256362396 @default.
- W4226078259 cites W2331128040 @default.
- W4226078259 cites W2467473805 @default.
- W4226078259 cites W2519481857 @default.
- W4226078259 cites W2536722097 @default.
- W4226078259 cites W2576444478 @default.
- W4226078259 cites W2779176852 @default.
- W4226078259 cites W2788682721 @default.
- W4226078259 cites W2792829624 @default.
- W4226078259 cites W2798876216 @default.
- W4226078259 cites W2808370801 @default.
- W4226078259 cites W2928165649 @default.
- W4226078259 cites W2948606054 @default.
- W4226078259 cites W2962754725 @default.
- W4226078259 cites W2962793481 @default.
- W4226078259 cites W2963074253 @default.
- W4226078259 cites W2963306157 @default.
- W4226078259 cites W2963928582 @default.
- W4226078259 cites W2969134192 @default.
- W4226078259 cites W2977216913 @default.
- W4226078259 cites W2985194834 @default.
- W4226078259 cites W2988396473 @default.
- W4226078259 cites W2990007814 @default.
- W4226078259 cites W2996367318 @default.
- W4226078259 cites W2998249728 @default.
- W4226078259 cites W3028365735 @default.
- W4226078259 cites W3034278302 @default.
- W4226078259 cites W3034331889 @default.
- W4226078259 cites W3034359211 @default.
- W4226078259 cites W3034578106 @default.
- W4226078259 cites W3066471605 @default.
- W4226078259 cites W3103309903 @default.
- W4226078259 cites W3133769291 @default.
- W4226078259 cites W3159890710 @default.
- W4226078259 doi "https://doi.org/10.1109/tmm.2022.3163554" @default.
- W4226078259 hasPublicationYear "2023" @default.
- W4226078259 type Work @default.
- W4226078259 citedByCount "12" @default.
- W4226078259 countsByYear W42260782592022 @default.
- W4226078259 countsByYear W42260782592023 @default.
- W4226078259 crossrefType "journal-article" @default.
- W4226078259 hasAuthorship W4226078259A5014878249 @default.
- W4226078259 hasAuthorship W4226078259A5017562594 @default.
- W4226078259 hasAuthorship W4226078259A5065703564 @default.
- W4226078259 hasAuthorship W4226078259A5065794169 @default.
- W4226078259 hasAuthorship W4226078259A5081411724 @default.
- W4226078259 hasConcept C115961682 @default.
- W4226078259 hasConcept C120665830 @default.
- W4226078259 hasConcept C121332964 @default.
- W4226078259 hasConcept C123403432 @default.
- W4226078259 hasConcept C138885662 @default.
- W4226078259 hasConcept C14166107 @default.
- W4226078259 hasConcept C153180895 @default.
- W4226078259 hasConcept C153294291 @default.
- W4226078259 hasConcept C154945302 @default.
- W4226078259 hasConcept C17744445 @default.
- W4226078259 hasConcept C199539241 @default.
- W4226078259 hasConcept C2524010 @default.
- W4226078259 hasConcept C2776359362 @default.
- W4226078259 hasConcept C2776401178 @default.
- W4226078259 hasConcept C31972630 @default.
- W4226078259 hasConcept C33923547 @default.
- W4226078259 hasConcept C36464697 @default.
- W4226078259 hasConcept C41008148 @default.
- W4226078259 hasConcept C41895202 @default.
- W4226078259 hasConcept C59404180 @default.
- W4226078259 hasConcept C79974267 @default.
- W4226078259 hasConcept C94625758 @default.
- W4226078259 hasConceptScore W4226078259C115961682 @default.
- W4226078259 hasConceptScore W4226078259C120665830 @default.
- W4226078259 hasConceptScore W4226078259C121332964 @default.
- W4226078259 hasConceptScore W4226078259C123403432 @default.
- W4226078259 hasConceptScore W4226078259C138885662 @default.
- W4226078259 hasConceptScore W4226078259C14166107 @default.
- W4226078259 hasConceptScore W4226078259C153180895 @default.
- W4226078259 hasConceptScore W4226078259C153294291 @default.
- W4226078259 hasConceptScore W4226078259C154945302 @default.
- W4226078259 hasConceptScore W4226078259C17744445 @default.
- W4226078259 hasConceptScore W4226078259C199539241 @default.
- W4226078259 hasConceptScore W4226078259C2524010 @default.
- W4226078259 hasConceptScore W4226078259C2776359362 @default.
- W4226078259 hasConceptScore W4226078259C2776401178 @default.
- W4226078259 hasConceptScore W4226078259C31972630 @default.