Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226080083> ?p ?o ?g. }
- W4226080083 endingPage "434" @default.
- W4226080083 startingPage "426" @default.
- W4226080083 abstract "The geometric renormalization (GR) group of complex networks based on hidden metric space provides a powerful framework for studying the self-similarity of networks. Recent studies have shown that this framework can significantly reduce the size and complexity of the initial system. In this sense, the smaller-scale replica can be used as an alternative or guidance to the original large-scale network. In this article, we extend the GR framework to the weighted network and prove that this framework can sustain the self-similarity of synthetic weighted networks and real-world weighted networks. Furthermore, we assign the corresponding weights to all edges of reconstructed human connectomes at five different resolutions, and the results show that topological features of these networks exhibit self-similar behaviors. Remarkably, our results also suggest that the GR transform group can generate a series of low-resolution replica networks that are similar to the initial highest-resolution human connectome networks, which greatly promotes the network science, neuroscience, and physics understanding of brain mechanisms, and is of great significance to the research of brain science. Finally, a typical spin-like model is used to further verify the rationality of this framework." @default.
- W4226080083 created "2022-05-05" @default.
- W4226080083 creator A5027329074 @default.
- W4226080083 creator A5054623491 @default.
- W4226080083 creator A5081245089 @default.
- W4226080083 date "2023-04-01" @default.
- W4226080083 modified "2023-10-03" @default.
- W4226080083 title "Geometric Renormalization Reveals the Self-Similarity of Weighted Networks" @default.
- W4226080083 cites W1572272766 @default.
- W4226080083 cites W1614902811 @default.
- W4226080083 cites W1706328360 @default.
- W4226080083 cites W1971215074 @default.
- W4226080083 cites W1973353128 @default.
- W4226080083 cites W1976870689 @default.
- W4226080083 cites W2006417078 @default.
- W4226080083 cites W2008620264 @default.
- W4226080083 cites W2022665714 @default.
- W4226080083 cites W2030407863 @default.
- W4226080083 cites W2050148381 @default.
- W4226080083 cites W2074958855 @default.
- W4226080083 cites W2091822090 @default.
- W4226080083 cites W2092040152 @default.
- W4226080083 cites W2092084789 @default.
- W4226080083 cites W2101420429 @default.
- W4226080083 cites W2112090702 @default.
- W4226080083 cites W2125315567 @default.
- W4226080083 cites W2148604310 @default.
- W4226080083 cites W2149055390 @default.
- W4226080083 cites W2160058983 @default.
- W4226080083 cites W2170766502 @default.
- W4226080083 cites W2277170616 @default.
- W4226080083 cites W2296729071 @default.
- W4226080083 cites W2473633166 @default.
- W4226080083 cites W2565887265 @default.
- W4226080083 cites W261461018 @default.
- W4226080083 cites W2620912207 @default.
- W4226080083 cites W2740492228 @default.
- W4226080083 cites W2768687687 @default.
- W4226080083 cites W2769133055 @default.
- W4226080083 cites W2786108078 @default.
- W4226080083 cites W2887508639 @default.
- W4226080083 cites W2941401642 @default.
- W4226080083 cites W2954395782 @default.
- W4226080083 cites W2956063860 @default.
- W4226080083 cites W2984075168 @default.
- W4226080083 cites W3002251323 @default.
- W4226080083 cites W3013822725 @default.
- W4226080083 cites W3087527580 @default.
- W4226080083 cites W3090322881 @default.
- W4226080083 cites W3116776584 @default.
- W4226080083 cites W3126380281 @default.
- W4226080083 cites W3128023116 @default.
- W4226080083 cites W3162421902 @default.
- W4226080083 cites W3197550162 @default.
- W4226080083 cites W4253460544 @default.
- W4226080083 doi "https://doi.org/10.1109/tcss.2022.3164975" @default.
- W4226080083 hasPublicationYear "2023" @default.
- W4226080083 type Work @default.
- W4226080083 citedByCount "4" @default.
- W4226080083 countsByYear W42260800832023 @default.
- W4226080083 crossrefType "journal-article" @default.
- W4226080083 hasAuthorship W4226080083A5027329074 @default.
- W4226080083 hasAuthorship W4226080083A5054623491 @default.
- W4226080083 hasAuthorship W4226080083A5081245089 @default.
- W4226080083 hasConcept C103278499 @default.
- W4226080083 hasConcept C115961682 @default.
- W4226080083 hasConcept C119453123 @default.
- W4226080083 hasConcept C136764020 @default.
- W4226080083 hasConcept C137753397 @default.
- W4226080083 hasConcept C142362112 @default.
- W4226080083 hasConcept C143724316 @default.
- W4226080083 hasConcept C151730666 @default.
- W4226080083 hasConcept C153349607 @default.
- W4226080083 hasConcept C154945302 @default.
- W4226080083 hasConcept C162324750 @default.
- W4226080083 hasConcept C169760540 @default.
- W4226080083 hasConcept C176217482 @default.
- W4226080083 hasConcept C21547014 @default.
- W4226080083 hasConcept C2524010 @default.
- W4226080083 hasConcept C2775937380 @default.
- W4226080083 hasConcept C3018011982 @default.
- W4226080083 hasConcept C33923547 @default.
- W4226080083 hasConcept C34947359 @default.
- W4226080083 hasConcept C41008148 @default.
- W4226080083 hasConcept C45715564 @default.
- W4226080083 hasConcept C80444323 @default.
- W4226080083 hasConcept C86803240 @default.
- W4226080083 hasConceptScore W4226080083C103278499 @default.
- W4226080083 hasConceptScore W4226080083C115961682 @default.
- W4226080083 hasConceptScore W4226080083C119453123 @default.
- W4226080083 hasConceptScore W4226080083C136764020 @default.
- W4226080083 hasConceptScore W4226080083C137753397 @default.
- W4226080083 hasConceptScore W4226080083C142362112 @default.
- W4226080083 hasConceptScore W4226080083C143724316 @default.
- W4226080083 hasConceptScore W4226080083C151730666 @default.
- W4226080083 hasConceptScore W4226080083C153349607 @default.
- W4226080083 hasConceptScore W4226080083C154945302 @default.
- W4226080083 hasConceptScore W4226080083C162324750 @default.