Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226097030> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4226097030 abstract "It is increasingly acknowledged that a priori statistical power estimation for planned studies with multiple model parameters is inherently a multivariate problem. Power for individual parameters of interest cannot be reliably estimated univariately because sampling variably in, correlation with, and variance explained relative to one parameter will impact the power for another parameter, all usual univariate considerations being equal. Explicit solutions in such cases, especially for models with many parameters, are either impractical or impossible to solve, leaving researchers with the prevailing method of simulating power. However, point estimates for a vector of model parameters are uncertain, and the impact of inaccuracy is unknown. In such cases, sensitivity analysis is recommended such that multiple combinations of possible observable parameter vectors are simulated to understand power trade-offs. A limitation to this approach is that it is computationally expensive to generate sufficient sensitivity combinations to accurately map the power trade-off function in increasingly high dimensional spaces for the models that social scientists estimate. This paper explores the efficient estimation and graphing of statistical power for a study over varying model parameter combinations. Optimally powering a study is crucial to ensure a minimum probability of finding the hypothesized effect. We first demonstrate the impact of varying parameter values on power for specific hypotheses of interest and quantify the computational intensity of computing such a graph for a given level of precision. Finally, we propose a simple and generalizable machine learning inspired solution to cut the computational cost to less than 7% of what could be called a brute force approach. [abridged]" @default.
- W4226097030 created "2022-05-05" @default.
- W4226097030 creator A5006824725 @default.
- W4226097030 creator A5018632941 @default.
- W4226097030 creator A5075325907 @default.
- W4226097030 date "2021-12-29" @default.
- W4226097030 modified "2023-09-23" @default.
- W4226097030 title "PowerGraph: Using neural networks and principal components to multivariate statistical power trade-offs" @default.
- W4226097030 hasPublicationYear "2021" @default.
- W4226097030 type Work @default.
- W4226097030 citedByCount "0" @default.
- W4226097030 crossrefType "posted-content" @default.
- W4226097030 hasAuthorship W4226097030A5006824725 @default.
- W4226097030 hasAuthorship W4226097030A5018632941 @default.
- W4226097030 hasAuthorship W4226097030A5075325907 @default.
- W4226097030 hasBestOaLocation W42260970301 @default.
- W4226097030 hasConcept C105795698 @default.
- W4226097030 hasConcept C111472728 @default.
- W4226097030 hasConcept C11413529 @default.
- W4226097030 hasConcept C119857082 @default.
- W4226097030 hasConcept C121332964 @default.
- W4226097030 hasConcept C121955636 @default.
- W4226097030 hasConcept C126255220 @default.
- W4226097030 hasConcept C127413603 @default.
- W4226097030 hasConcept C138885662 @default.
- W4226097030 hasConcept C14036430 @default.
- W4226097030 hasConcept C144133560 @default.
- W4226097030 hasConcept C161584116 @default.
- W4226097030 hasConcept C163258240 @default.
- W4226097030 hasConcept C167928553 @default.
- W4226097030 hasConcept C196083921 @default.
- W4226097030 hasConcept C199163554 @default.
- W4226097030 hasConcept C21200559 @default.
- W4226097030 hasConcept C24326235 @default.
- W4226097030 hasConcept C33923547 @default.
- W4226097030 hasConcept C41008148 @default.
- W4226097030 hasConcept C62520636 @default.
- W4226097030 hasConcept C73586568 @default.
- W4226097030 hasConcept C75553542 @default.
- W4226097030 hasConcept C78458016 @default.
- W4226097030 hasConcept C86803240 @default.
- W4226097030 hasConcept C96608239 @default.
- W4226097030 hasConceptScore W4226097030C105795698 @default.
- W4226097030 hasConceptScore W4226097030C111472728 @default.
- W4226097030 hasConceptScore W4226097030C11413529 @default.
- W4226097030 hasConceptScore W4226097030C119857082 @default.
- W4226097030 hasConceptScore W4226097030C121332964 @default.
- W4226097030 hasConceptScore W4226097030C121955636 @default.
- W4226097030 hasConceptScore W4226097030C126255220 @default.
- W4226097030 hasConceptScore W4226097030C127413603 @default.
- W4226097030 hasConceptScore W4226097030C138885662 @default.
- W4226097030 hasConceptScore W4226097030C14036430 @default.
- W4226097030 hasConceptScore W4226097030C144133560 @default.
- W4226097030 hasConceptScore W4226097030C161584116 @default.
- W4226097030 hasConceptScore W4226097030C163258240 @default.
- W4226097030 hasConceptScore W4226097030C167928553 @default.
- W4226097030 hasConceptScore W4226097030C196083921 @default.
- W4226097030 hasConceptScore W4226097030C199163554 @default.
- W4226097030 hasConceptScore W4226097030C21200559 @default.
- W4226097030 hasConceptScore W4226097030C24326235 @default.
- W4226097030 hasConceptScore W4226097030C33923547 @default.
- W4226097030 hasConceptScore W4226097030C41008148 @default.
- W4226097030 hasConceptScore W4226097030C62520636 @default.
- W4226097030 hasConceptScore W4226097030C73586568 @default.
- W4226097030 hasConceptScore W4226097030C75553542 @default.
- W4226097030 hasConceptScore W4226097030C78458016 @default.
- W4226097030 hasConceptScore W4226097030C86803240 @default.
- W4226097030 hasConceptScore W4226097030C96608239 @default.
- W4226097030 hasLocation W42260970301 @default.
- W4226097030 hasOpenAccess W4226097030 @default.
- W4226097030 hasPrimaryLocation W42260970301 @default.
- W4226097030 hasRelatedWork W111484 @default.
- W4226097030 hasRelatedWork W1348996 @default.
- W4226097030 hasRelatedWork W1395493 @default.
- W4226097030 hasRelatedWork W2213529 @default.
- W4226097030 hasRelatedWork W2550739 @default.
- W4226097030 hasRelatedWork W3329735 @default.
- W4226097030 hasRelatedWork W59059 @default.
- W4226097030 hasRelatedWork W7782605 @default.
- W4226097030 hasRelatedWork W902372 @default.
- W4226097030 hasRelatedWork W9800328 @default.
- W4226097030 isParatext "false" @default.
- W4226097030 isRetracted "false" @default.
- W4226097030 workType "article" @default.