Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226101064> ?p ?o ?g. }
- W4226101064 endingPage "16" @default.
- W4226101064 startingPage "1" @default.
- W4226101064 abstract "Background. Lung adenocarcinoma (LUAD) is the most common form of lung cancer, accounting for 30% of all cases and 40% of all non-small-cell lung cancer cases. Immune-related genes play a significant role in predicting the overall survival and monitoring the status of the cancer immune microenvironment. The present study was aimed at finding an immune-related gene signature for predicting LUAD patient outcomes. Methods. First, we chose the TCGA-LUAD project in the TCGA database as the training cohort for model training. For model validating, we found the datasets of GSE72094 and GSE68465 in the GEO database and took them as the candidate cohorts. We obtained 1793 immune-related genes from the ImmPort database and put them into a univariate Cox proportional hazard model to initially look for the genes with potential prognostic ability using the data of the training cohort. These identified genes then entered into a random survival forests-variable hunting algorithm for the best combination of genes for prognosis. In addition, the LASSO Cox regression model tested whether the gene combination can be further shrinkage, thereby constructing a gene signature. The Kaplan-Meier, Cox model, and ROC curve were deployed to examine the gene signature’s prognosis in both cohorts. We conducted GSEA analysis to study further the mechanisms and pathways that involved the gene signature. Finally, we performed integrating analyses about the 22 TICs, fully interpreted the relationship between our signature and each TIC, and highlighted some TICs playing vital roles in the signature’s prognostic ability. Results. A nine-gene signature was produced from the data of the training cohort. The Kaplan-Meier estimator, Cox proportional hazard model, and ROC curve confirmed the independence and predictive ability of the signature, using the data from the validation cohort. The GSEA analysis results illustrated the gene signature’s mechanism and emphasized the importance of immune-related pathways for the gene signature. 22 TICs immune infiltration analysis revealed resting mast cells’ key roles in contributing to gene signature’s prognostic ability. Conclusions. This study discovered a novel immune-related nine-gene signature (BTK, CCR6, S100A10, SEMA3C, GPI, SCG2, TNFRSF11A, CCL20, and DKK1) that predicts LUAD prognosis precisely and associates with resting mast cells strongly." @default.
- W4226101064 created "2022-05-05" @default.
- W4226101064 creator A5026410403 @default.
- W4226101064 creator A5033498789 @default.
- W4226101064 creator A5062770472 @default.
- W4226101064 creator A5081844561 @default.
- W4226101064 date "2022-04-09" @default.
- W4226101064 modified "2023-09-30" @default.
- W4226101064 title "A Novel Immune-Related Gene Signature Predicts Prognosis of Lung Adenocarcinoma" @default.
- W4226101064 cites W1495209425 @default.
- W4226101064 cites W1606413143 @default.
- W4226101064 cites W1858433094 @default.
- W4226101064 cites W1971438777 @default.
- W4226101064 cites W1989376891 @default.
- W4226101064 cites W2007749789 @default.
- W4226101064 cites W2021536610 @default.
- W4226101064 cites W2021733365 @default.
- W4226101064 cites W2022706931 @default.
- W4226101064 cites W2023876251 @default.
- W4226101064 cites W2049631754 @default.
- W4226101064 cites W2053822709 @default.
- W4226101064 cites W2072451938 @default.
- W4226101064 cites W2097360283 @default.
- W4226101064 cites W2103708415 @default.
- W4226101064 cites W2104337528 @default.
- W4226101064 cites W2133772088 @default.
- W4226101064 cites W2149199519 @default.
- W4226101064 cites W2154385932 @default.
- W4226101064 cites W2168051713 @default.
- W4226101064 cites W2294636788 @default.
- W4226101064 cites W2441236057 @default.
- W4226101064 cites W2517827643 @default.
- W4226101064 cites W2535462468 @default.
- W4226101064 cites W2606526654 @default.
- W4226101064 cites W2691615730 @default.
- W4226101064 cites W2735681665 @default.
- W4226101064 cites W2784371446 @default.
- W4226101064 cites W2790227650 @default.
- W4226101064 cites W2792468812 @default.
- W4226101064 cites W2796207838 @default.
- W4226101064 cites W2800559186 @default.
- W4226101064 cites W2806421539 @default.
- W4226101064 cites W2892562132 @default.
- W4226101064 cites W2904050669 @default.
- W4226101064 cites W2909008483 @default.
- W4226101064 cites W2912464229 @default.
- W4226101064 cites W2920152277 @default.
- W4226101064 cites W2940561057 @default.
- W4226101064 cites W2942610007 @default.
- W4226101064 cites W2944258161 @default.
- W4226101064 cites W2969086321 @default.
- W4226101064 cites W2970886433 @default.
- W4226101064 cites W2982872965 @default.
- W4226101064 cites W2999417355 @default.
- W4226101064 cites W3004396779 @default.
- W4226101064 cites W3013493241 @default.
- W4226101064 cites W3016554445 @default.
- W4226101064 cites W3080830982 @default.
- W4226101064 cites W3082242349 @default.
- W4226101064 cites W3083835573 @default.
- W4226101064 cites W3092421016 @default.
- W4226101064 cites W3179394167 @default.
- W4226101064 cites W3190162379 @default.
- W4226101064 cites W4229688459 @default.
- W4226101064 cites W4243903519 @default.
- W4226101064 cites W4294541781 @default.
- W4226101064 doi "https://doi.org/10.1155/2022/4995874" @default.
- W4226101064 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35437508" @default.
- W4226101064 hasPublicationYear "2022" @default.
- W4226101064 type Work @default.
- W4226101064 citedByCount "5" @default.
- W4226101064 countsByYear W42261010642022 @default.
- W4226101064 countsByYear W42261010642023 @default.
- W4226101064 crossrefType "journal-article" @default.
- W4226101064 hasAuthorship W4226101064A5026410403 @default.
- W4226101064 hasAuthorship W4226101064A5033498789 @default.
- W4226101064 hasAuthorship W4226101064A5062770472 @default.
- W4226101064 hasAuthorship W4226101064A5081844561 @default.
- W4226101064 hasBestOaLocation W42261010641 @default.
- W4226101064 hasConcept C104317684 @default.
- W4226101064 hasConcept C10515644 @default.
- W4226101064 hasConcept C121608353 @default.
- W4226101064 hasConcept C126322002 @default.
- W4226101064 hasConcept C136764020 @default.
- W4226101064 hasConcept C143998085 @default.
- W4226101064 hasConcept C150194340 @default.
- W4226101064 hasConcept C203014093 @default.
- W4226101064 hasConcept C207103383 @default.
- W4226101064 hasConcept C2776256026 @default.
- W4226101064 hasConcept C2779733811 @default.
- W4226101064 hasConcept C2781182431 @default.
- W4226101064 hasConcept C37616216 @default.
- W4226101064 hasConcept C41008148 @default.
- W4226101064 hasConcept C44249647 @default.
- W4226101064 hasConcept C50382708 @default.
- W4226101064 hasConcept C54355233 @default.
- W4226101064 hasConcept C60644358 @default.
- W4226101064 hasConcept C71924100 @default.