Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226103071> ?p ?o ?g. }
- W4226103071 abstract "The emergence of bacteria that are resistant to antibiotics is common in areas where antibiotics are used widely. The current standard procedure for detecting bacterial drug resistance is based on bacterial growth under antibiotic treatments. Here we describe the morphological changes in enoxacin-resistant Escherichia coli cells and the computational method used to identify these resistant cells in transmission electron microscopy (TEM) images without using antibiotics. Our approach was to create patches from TEM images of enoxacin-sensitive and enoxacin-resistant E. coli strains, use a convolutional neural network for patch classification, and identify the strains on the basis of the classification results. The proposed method was highly accurate in classifying cells, achieving an accuracy rate of 0.94. Using a gradient-weighted class activation mapping to visualize the region of interest, enoxacin-resistant and enoxacin-sensitive cells were characterized by comparing differences in the envelope. Moreover, Pearson's correlation coefficients suggested that four genes, including lpp, the gene encoding the major outer membrane lipoprotein, were strongly associated with the image features of enoxacin-resistant cells." @default.
- W4226103071 created "2022-05-05" @default.
- W4226103071 creator A5001173964 @default.
- W4226103071 creator A5015866288 @default.
- W4226103071 creator A5021221650 @default.
- W4226103071 creator A5036450169 @default.
- W4226103071 creator A5040640825 @default.
- W4226103071 creator A5040773064 @default.
- W4226103071 creator A5047241375 @default.
- W4226103071 creator A5050914303 @default.
- W4226103071 creator A5056273706 @default.
- W4226103071 creator A5056491345 @default.
- W4226103071 creator A5060038749 @default.
- W4226103071 creator A5072278965 @default.
- W4226103071 creator A5084886439 @default.
- W4226103071 creator A5086525161 @default.
- W4226103071 date "2022-03-15" @default.
- W4226103071 modified "2023-09-30" @default.
- W4226103071 title "Identification of Bacterial Drug-Resistant Cells by the Convolutional Neural Network in Transmission Electron Microscope Images" @default.
- W4226103071 cites W1487808887 @default.
- W4226103071 cites W1488105682 @default.
- W4226103071 cites W1546425537 @default.
- W4226103071 cites W1580778748 @default.
- W4226103071 cites W1998723434 @default.
- W4226103071 cites W1999396043 @default.
- W4226103071 cites W2006259275 @default.
- W4226103071 cites W2027256175 @default.
- W4226103071 cites W2031223726 @default.
- W4226103071 cites W2042475567 @default.
- W4226103071 cites W2058952776 @default.
- W4226103071 cites W2061659241 @default.
- W4226103071 cites W2066711148 @default.
- W4226103071 cites W2107564904 @default.
- W4226103071 cites W2117539524 @default.
- W4226103071 cites W2120061656 @default.
- W4226103071 cites W2120813682 @default.
- W4226103071 cites W2130265680 @default.
- W4226103071 cites W2136286909 @default.
- W4226103071 cites W2147057508 @default.
- W4226103071 cites W2158408911 @default.
- W4226103071 cites W2162839388 @default.
- W4226103071 cites W2165562761 @default.
- W4226103071 cites W2521803624 @default.
- W4226103071 cites W2560707317 @default.
- W4226103071 cites W2604468722 @default.
- W4226103071 cites W2763223203 @default.
- W4226103071 cites W2779770955 @default.
- W4226103071 cites W2805191422 @default.
- W4226103071 cites W2810286527 @default.
- W4226103071 cites W2886894534 @default.
- W4226103071 cites W2888612993 @default.
- W4226103071 cites W2913793036 @default.
- W4226103071 cites W2962858109 @default.
- W4226103071 cites W2969979807 @default.
- W4226103071 cites W3101982572 @default.
- W4226103071 cites W3108628125 @default.
- W4226103071 cites W4295312788 @default.
- W4226103071 doi "https://doi.org/10.3389/fmicb.2022.839718" @default.
- W4226103071 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35369486" @default.
- W4226103071 hasPublicationYear "2022" @default.
- W4226103071 type Work @default.
- W4226103071 citedByCount "0" @default.
- W4226103071 crossrefType "journal-article" @default.
- W4226103071 hasAuthorship W4226103071A5001173964 @default.
- W4226103071 hasAuthorship W4226103071A5015866288 @default.
- W4226103071 hasAuthorship W4226103071A5021221650 @default.
- W4226103071 hasAuthorship W4226103071A5036450169 @default.
- W4226103071 hasAuthorship W4226103071A5040640825 @default.
- W4226103071 hasAuthorship W4226103071A5040773064 @default.
- W4226103071 hasAuthorship W4226103071A5047241375 @default.
- W4226103071 hasAuthorship W4226103071A5050914303 @default.
- W4226103071 hasAuthorship W4226103071A5056273706 @default.
- W4226103071 hasAuthorship W4226103071A5056491345 @default.
- W4226103071 hasAuthorship W4226103071A5060038749 @default.
- W4226103071 hasAuthorship W4226103071A5072278965 @default.
- W4226103071 hasAuthorship W4226103071A5084886439 @default.
- W4226103071 hasAuthorship W4226103071A5086525161 @default.
- W4226103071 hasBestOaLocation W42261030711 @default.
- W4226103071 hasConcept C104317684 @default.
- W4226103071 hasConcept C153180895 @default.
- W4226103071 hasConcept C154945302 @default.
- W4226103071 hasConcept C2776072828 @default.
- W4226103071 hasConcept C2778049240 @default.
- W4226103071 hasConcept C2778512257 @default.
- W4226103071 hasConcept C41008148 @default.
- W4226103071 hasConcept C501593827 @default.
- W4226103071 hasConcept C523546767 @default.
- W4226103071 hasConcept C54355233 @default.
- W4226103071 hasConcept C547475151 @default.
- W4226103071 hasConcept C70721500 @default.
- W4226103071 hasConcept C81363708 @default.
- W4226103071 hasConcept C86803240 @default.
- W4226103071 hasConcept C89423630 @default.
- W4226103071 hasConceptScore W4226103071C104317684 @default.
- W4226103071 hasConceptScore W4226103071C153180895 @default.
- W4226103071 hasConceptScore W4226103071C154945302 @default.
- W4226103071 hasConceptScore W4226103071C2776072828 @default.
- W4226103071 hasConceptScore W4226103071C2778049240 @default.
- W4226103071 hasConceptScore W4226103071C2778512257 @default.
- W4226103071 hasConceptScore W4226103071C41008148 @default.