Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226105881> ?p ?o ?g. }
Showing items 1 to 54 of
54
with 100 items per page.
- W4226105881 abstract "Plug-and-Play Priors (PnP) is one of the most widely-used frameworks for solving computational imaging problems through the integration of physical models and learned models. PnP leverages high-fidelity physical sensor models and powerful machine learning methods for prior modeling of data to provide state-of-the-art reconstruction algorithms. PnP algorithms alternate between minimizing a data-fidelity term to promote data consistency and imposing a learned regularizer in the form of an image denoiser. Recent highly-successful applications of PnP algorithms include bio-microscopy, computerized tomography, magnetic resonance imaging, and joint ptycho-tomography. This article presents a unified and principled review of PnP by tracing its roots, describing its major variations, summarizing main results, and discussing applications in computational imaging. We also point the way towards further developments by discussing recent results on equilibrium equations that formulate the problem associated with PnP algorithms." @default.
- W4226105881 created "2022-05-05" @default.
- W4226105881 creator A5015244709 @default.
- W4226105881 creator A5020010248 @default.
- W4226105881 creator A5024602237 @default.
- W4226105881 creator A5056657991 @default.
- W4226105881 date "2022-03-31" @default.
- W4226105881 modified "2023-10-16" @default.
- W4226105881 title "Plug-and-Play Methods for Integrating Physical and Learned Models in Computational Imaging" @default.
- W4226105881 doi "https://doi.org/10.48550/arxiv.2203.17061" @default.
- W4226105881 hasPublicationYear "2022" @default.
- W4226105881 type Work @default.
- W4226105881 citedByCount "1" @default.
- W4226105881 countsByYear W42261058812022 @default.
- W4226105881 crossrefType "posted-content" @default.
- W4226105881 hasAuthorship W4226105881A5015244709 @default.
- W4226105881 hasAuthorship W4226105881A5020010248 @default.
- W4226105881 hasAuthorship W4226105881A5024602237 @default.
- W4226105881 hasAuthorship W4226105881A5056657991 @default.
- W4226105881 hasBestOaLocation W42261058811 @default.
- W4226105881 hasConcept C111919701 @default.
- W4226105881 hasConcept C119857082 @default.
- W4226105881 hasConcept C138673069 @default.
- W4226105881 hasConcept C154945302 @default.
- W4226105881 hasConcept C2776436953 @default.
- W4226105881 hasConcept C2776459999 @default.
- W4226105881 hasConcept C41008148 @default.
- W4226105881 hasConcept C66024118 @default.
- W4226105881 hasConcept C76155785 @default.
- W4226105881 hasConceptScore W4226105881C111919701 @default.
- W4226105881 hasConceptScore W4226105881C119857082 @default.
- W4226105881 hasConceptScore W4226105881C138673069 @default.
- W4226105881 hasConceptScore W4226105881C154945302 @default.
- W4226105881 hasConceptScore W4226105881C2776436953 @default.
- W4226105881 hasConceptScore W4226105881C2776459999 @default.
- W4226105881 hasConceptScore W4226105881C41008148 @default.
- W4226105881 hasConceptScore W4226105881C66024118 @default.
- W4226105881 hasConceptScore W4226105881C76155785 @default.
- W4226105881 hasLocation W42261058811 @default.
- W4226105881 hasOpenAccess W4226105881 @default.
- W4226105881 hasPrimaryLocation W42261058811 @default.
- W4226105881 hasRelatedWork W136993337 @default.
- W4226105881 hasRelatedWork W1821941829 @default.
- W4226105881 hasRelatedWork W1857372554 @default.
- W4226105881 hasRelatedWork W2350879319 @default.
- W4226105881 hasRelatedWork W2378885312 @default.
- W4226105881 hasRelatedWork W2817444178 @default.
- W4226105881 hasRelatedWork W2895812494 @default.
- W4226105881 hasRelatedWork W2961085424 @default.
- W4226105881 hasRelatedWork W3186943837 @default.
- W4226105881 hasRelatedWork W4232379899 @default.
- W4226105881 isParatext "false" @default.
- W4226105881 isRetracted "false" @default.
- W4226105881 workType "article" @default.