Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226127777> ?p ?o ?g. }
- W4226127777 endingPage "12" @default.
- W4226127777 startingPage "1" @default.
- W4226127777 abstract "A wormhole attack is a type of attack on the network layer that reflects routing protocols. The classification is performed with several methods of machine learning consisting of <math xmlns=http://www.w3.org/1998/Math/MathML id=M1> <mi>K</mi> </math> -nearest neighbor (KNN), support vector machine (SVM), decision tree (DT), linear discrimination analysis (LDA), naive Bayes (NB), and convolutional neural network (CNN). Moreover, we used nodes’ properties for feature extraction, especially nodes’ speed, in the MANET. We have collected 3997 distinct (normal 3781 and malicious 216) samples that comprise normal and malicious nodes. The classification results show that the accuracy of the KNN, SVM, DT, LDA, NB, and CNN methods are 97.1%, 98.2%, 98.9%, 95.2%, 94.7%, and 96.4%, respectively. Based on our findings, the DT method’s accuracy is 98.9% and higher than other ways. In the next priority, SVM, KNN, CNN, LDA, and NB indicate high accuracy, respectively." @default.
- W4226127777 created "2022-05-05" @default.
- W4226127777 creator A5001755097 @default.
- W4226127777 creator A5039930701 @default.
- W4226127777 date "2022-01-31" @default.
- W4226127777 modified "2023-09-26" @default.
- W4226127777 title "Machine Learning Methods for Intrusive Detection of Wormhole Attack in Mobile Ad Hoc Network (MANET)" @default.
- W4226127777 cites W2007087405 @default.
- W4226127777 cites W2049287639 @default.
- W4226127777 cites W2207718193 @default.
- W4226127777 cites W2239060899 @default.
- W4226127777 cites W2517011545 @default.
- W4226127777 cites W2545689046 @default.
- W4226127777 cites W2550816608 @default.
- W4226127777 cites W2593833939 @default.
- W4226127777 cites W2596447600 @default.
- W4226127777 cites W2610531996 @default.
- W4226127777 cites W2767035496 @default.
- W4226127777 cites W2889057033 @default.
- W4226127777 cites W2902335478 @default.
- W4226127777 cites W2949160428 @default.
- W4226127777 cites W2955081954 @default.
- W4226127777 cites W2979458021 @default.
- W4226127777 cites W2995874545 @default.
- W4226127777 cites W2997751246 @default.
- W4226127777 cites W3005485628 @default.
- W4226127777 cites W3009817668 @default.
- W4226127777 cites W3016607949 @default.
- W4226127777 cites W3016609367 @default.
- W4226127777 cites W3017267134 @default.
- W4226127777 cites W3020860606 @default.
- W4226127777 cites W3037689072 @default.
- W4226127777 cites W3045802155 @default.
- W4226127777 cites W3049590105 @default.
- W4226127777 cites W3082914179 @default.
- W4226127777 cites W3089453656 @default.
- W4226127777 cites W3115025749 @default.
- W4226127777 cites W3124774482 @default.
- W4226127777 cites W3125880894 @default.
- W4226127777 cites W3125956826 @default.
- W4226127777 cites W3126462202 @default.
- W4226127777 cites W3127256598 @default.
- W4226127777 cites W3128596639 @default.
- W4226127777 cites W3135717088 @default.
- W4226127777 cites W3140564856 @default.
- W4226127777 cites W3141126815 @default.
- W4226127777 cites W3153422001 @default.
- W4226127777 cites W3161846591 @default.
- W4226127777 cites W3167426483 @default.
- W4226127777 cites W3173373210 @default.
- W4226127777 cites W3174449085 @default.
- W4226127777 cites W3174520390 @default.
- W4226127777 cites W3187467424 @default.
- W4226127777 cites W3188529979 @default.
- W4226127777 cites W3197141964 @default.
- W4226127777 cites W3198558307 @default.
- W4226127777 cites W3203269949 @default.
- W4226127777 cites W3207190436 @default.
- W4226127777 cites W3208886632 @default.
- W4226127777 cites W3217068065 @default.
- W4226127777 doi "https://doi.org/10.1155/2022/2375702" @default.
- W4226127777 hasPublicationYear "2022" @default.
- W4226127777 type Work @default.
- W4226127777 citedByCount "6" @default.
- W4226127777 countsByYear W42261277772022 @default.
- W4226127777 countsByYear W42261277772023 @default.
- W4226127777 crossrefType "journal-article" @default.
- W4226127777 hasAuthorship W4226127777A5001755097 @default.
- W4226127777 hasAuthorship W4226127777A5039930701 @default.
- W4226127777 hasBestOaLocation W42261277771 @default.
- W4226127777 hasConcept C113238511 @default.
- W4226127777 hasConcept C119857082 @default.
- W4226127777 hasConcept C12267149 @default.
- W4226127777 hasConcept C153180895 @default.
- W4226127777 hasConcept C154945302 @default.
- W4226127777 hasConcept C158379750 @default.
- W4226127777 hasConcept C31258907 @default.
- W4226127777 hasConcept C41008148 @default.
- W4226127777 hasConcept C52001869 @default.
- W4226127777 hasConcept C81363708 @default.
- W4226127777 hasConcept C84525736 @default.
- W4226127777 hasConcept C91280400 @default.
- W4226127777 hasConceptScore W4226127777C113238511 @default.
- W4226127777 hasConceptScore W4226127777C119857082 @default.
- W4226127777 hasConceptScore W4226127777C12267149 @default.
- W4226127777 hasConceptScore W4226127777C153180895 @default.
- W4226127777 hasConceptScore W4226127777C154945302 @default.
- W4226127777 hasConceptScore W4226127777C158379750 @default.
- W4226127777 hasConceptScore W4226127777C31258907 @default.
- W4226127777 hasConceptScore W4226127777C41008148 @default.
- W4226127777 hasConceptScore W4226127777C52001869 @default.
- W4226127777 hasConceptScore W4226127777C81363708 @default.
- W4226127777 hasConceptScore W4226127777C84525736 @default.
- W4226127777 hasConceptScore W4226127777C91280400 @default.
- W4226127777 hasLocation W42261277771 @default.
- W4226127777 hasLocation W42261277772 @default.
- W4226127777 hasLocation W42261277773 @default.
- W4226127777 hasOpenAccess W4226127777 @default.