Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226129261> ?p ?o ?g. }
- W4226129261 endingPage "195901" @default.
- W4226129261 startingPage "195901" @default.
- W4226129261 abstract "The prediction of crystal properties has always been limited by huge computational costs. In recent years, the rise of machine learning methods has gradually made it possible to study crystal properties on a large scale. We propose an attention mechanism-based crystal graph convolutional neural network, which builds a machine learning model by inputting crystallographic information files and target properties. In our research, the attention mechanism is introduced in the crystal graph convolutional neural network (CGCNN) to learn the local chemical environment, and node normalization is added to reduce the risk of overfitting. We collect structural information and calculation data of about 36 000 crystals and examine the prediction performance of the models for the formation energy, total energy, bandgap, and Fermi energy of crystals in our research. Compared with the CGCNN, it is found that the accuracy (ACCU) of the predicted properties can be further improved to varying degrees by the introduction of the attention mechanism. Moreover, the total magnetization and bandgap can be classified under the same neural network framework. The classification ACCU of wide bandgap semiconductor crystals with a bandgap threshold of 2.3 eV reaches 93.2%, and the classification ACCU of crystals with a total magnetization threshold of 0.5 μBreaches 88.8%. The work is helpful to realize large-scale prediction and classification of crystal properties, accelerating the discovery of new functional crystal materials." @default.
- W4226129261 created "2022-05-05" @default.
- W4226129261 creator A5019538116 @default.
- W4226129261 creator A5038058873 @default.
- W4226129261 creator A5061639433 @default.
- W4226129261 date "2022-03-09" @default.
- W4226129261 modified "2023-10-01" @default.
- W4226129261 title "Study of crystal properties based on attention mechanism and crystal graph convolutional neural network" @default.
- W4226129261 cites W1678620623 @default.
- W4226129261 cites W1964357583 @default.
- W4226129261 cites W1992985800 @default.
- W4226129261 cites W2008041424 @default.
- W4226129261 cites W2015197254 @default.
- W4226129261 cites W2039240409 @default.
- W4226129261 cites W2042925852 @default.
- W4226129261 cites W2074616700 @default.
- W4226129261 cites W2111124526 @default.
- W4226129261 cites W2151521007 @default.
- W4226129261 cites W2164524421 @default.
- W4226129261 cites W2217912240 @default.
- W4226129261 cites W2318376321 @default.
- W4226129261 cites W2464725281 @default.
- W4226129261 cites W2546986866 @default.
- W4226129261 cites W2742835787 @default.
- W4226129261 cites W2766856748 @default.
- W4226129261 cites W2791528454 @default.
- W4226129261 cites W2884430236 @default.
- W4226129261 cites W2902452488 @default.
- W4226129261 cites W2917193084 @default.
- W4226129261 cites W2949095042 @default.
- W4226129261 cites W2968923792 @default.
- W4226129261 cites W2978707075 @default.
- W4226129261 cites W2999580660 @default.
- W4226129261 cites W3014091026 @default.
- W4226129261 cites W3049517558 @default.
- W4226129261 cites W3084283892 @default.
- W4226129261 cites W3100220443 @default.
- W4226129261 cites W3116783766 @default.
- W4226129261 cites W3119483874 @default.
- W4226129261 cites W3125542198 @default.
- W4226129261 cites W3152893301 @default.
- W4226129261 cites W3162274593 @default.
- W4226129261 cites W3189385021 @default.
- W4226129261 cites W4210257598 @default.
- W4226129261 doi "https://doi.org/10.1088/1361-648x/ac5705" @default.
- W4226129261 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35189607" @default.
- W4226129261 hasPublicationYear "2022" @default.
- W4226129261 type Work @default.
- W4226129261 citedByCount "5" @default.
- W4226129261 countsByYear W42261292612022 @default.
- W4226129261 countsByYear W42261292612023 @default.
- W4226129261 crossrefType "journal-article" @default.
- W4226129261 hasAuthorship W4226129261A5019538116 @default.
- W4226129261 hasAuthorship W4226129261A5038058873 @default.
- W4226129261 hasAuthorship W4226129261A5061639433 @default.
- W4226129261 hasConcept C11413529 @default.
- W4226129261 hasConcept C119857082 @default.
- W4226129261 hasConcept C132525143 @default.
- W4226129261 hasConcept C154945302 @default.
- W4226129261 hasConcept C181966813 @default.
- W4226129261 hasConcept C192562407 @default.
- W4226129261 hasConcept C199360897 @default.
- W4226129261 hasConcept C22019652 @default.
- W4226129261 hasConcept C2781285689 @default.
- W4226129261 hasConcept C41008148 @default.
- W4226129261 hasConcept C49040817 @default.
- W4226129261 hasConcept C50644808 @default.
- W4226129261 hasConcept C80444323 @default.
- W4226129261 hasConcept C81363708 @default.
- W4226129261 hasConceptScore W4226129261C11413529 @default.
- W4226129261 hasConceptScore W4226129261C119857082 @default.
- W4226129261 hasConceptScore W4226129261C132525143 @default.
- W4226129261 hasConceptScore W4226129261C154945302 @default.
- W4226129261 hasConceptScore W4226129261C181966813 @default.
- W4226129261 hasConceptScore W4226129261C192562407 @default.
- W4226129261 hasConceptScore W4226129261C199360897 @default.
- W4226129261 hasConceptScore W4226129261C22019652 @default.
- W4226129261 hasConceptScore W4226129261C2781285689 @default.
- W4226129261 hasConceptScore W4226129261C41008148 @default.
- W4226129261 hasConceptScore W4226129261C49040817 @default.
- W4226129261 hasConceptScore W4226129261C50644808 @default.
- W4226129261 hasConceptScore W4226129261C80444323 @default.
- W4226129261 hasConceptScore W4226129261C81363708 @default.
- W4226129261 hasIssue "19" @default.
- W4226129261 hasLocation W42261292611 @default.
- W4226129261 hasLocation W42261292612 @default.
- W4226129261 hasOpenAccess W4226129261 @default.
- W4226129261 hasPrimaryLocation W42261292611 @default.
- W4226129261 hasRelatedWork W2767651786 @default.
- W4226129261 hasRelatedWork W2989932438 @default.
- W4226129261 hasRelatedWork W3012393889 @default.
- W4226129261 hasRelatedWork W3081496756 @default.
- W4226129261 hasRelatedWork W3099765033 @default.
- W4226129261 hasRelatedWork W3127819136 @default.
- W4226129261 hasRelatedWork W4210794429 @default.
- W4226129261 hasRelatedWork W4220996320 @default.
- W4226129261 hasRelatedWork W4283732135 @default.
- W4226129261 hasRelatedWork W4287776258 @default.