Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226135239> ?p ?o ?g. }
- W4226135239 endingPage "F15" @default.
- W4226135239 startingPage "F15" @default.
- W4226135239 abstract "For full-waveform (FW) LiDAR signals, conventional echo decomposition methods use complicated filtering or de-noising algorithms for signal pre-processing. However, the speed and accuracy of these algorithms are limited. In this paper, we study a highly efficient and accurate decomposition method based on the FW dense connection network (FDCN) or FW deep residual network (FDRN). FDCN is a lightweight and efficient network for SNR higher than 24 dB, while FDRN is a deeper neural network with multiple residual blocks and works well for low SNR such as 12 dB. We compare FDCN and FDRN with other conventional methods. With FDCN and FDRN, the mean error for estimating an echo peak location is under 0.2 ns, while the amplitude error is under 5 mV when the dynamic range is 0∼100mV. Both errors are much lower than the values using conventional methods." @default.
- W4226135239 created "2022-05-05" @default.
- W4226135239 creator A5062061791 @default.
- W4226135239 creator A5087968444 @default.
- W4226135239 date "2022-01-03" @default.
- W4226135239 modified "2023-09-24" @default.
- W4226135239 title "Full-waveform LiDAR echo decomposition based on dense and residual neural networks" @default.
- W4226135239 cites W2010819732 @default.
- W4226135239 cites W2017524709 @default.
- W4226135239 cites W2018746476 @default.
- W4226135239 cites W2037105253 @default.
- W4226135239 cites W2049633694 @default.
- W4226135239 cites W2062939783 @default.
- W4226135239 cites W2080157231 @default.
- W4226135239 cites W2081043154 @default.
- W4226135239 cites W2082750454 @default.
- W4226135239 cites W2087070363 @default.
- W4226135239 cites W2088732846 @default.
- W4226135239 cites W2094605604 @default.
- W4226135239 cites W2131256165 @default.
- W4226135239 cites W2154178829 @default.
- W4226135239 cites W2158757182 @default.
- W4226135239 cites W2162373307 @default.
- W4226135239 cites W2169951244 @default.
- W4226135239 cites W2514981832 @default.
- W4226135239 cites W2523221337 @default.
- W4226135239 cites W2584598452 @default.
- W4226135239 cites W2781721736 @default.
- W4226135239 cites W2891330188 @default.
- W4226135239 cites W2953297071 @default.
- W4226135239 cites W2982248235 @default.
- W4226135239 cites W3014284211 @default.
- W4226135239 cites W763760530 @default.
- W4226135239 doi "https://doi.org/10.1364/ao.444910" @default.
- W4226135239 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35333222" @default.
- W4226135239 hasPublicationYear "2022" @default.
- W4226135239 type Work @default.
- W4226135239 citedByCount "3" @default.
- W4226135239 countsByYear W42261352392022 @default.
- W4226135239 crossrefType "journal-article" @default.
- W4226135239 hasAuthorship W4226135239A5062061791 @default.
- W4226135239 hasAuthorship W4226135239A5087968444 @default.
- W4226135239 hasConcept C104267543 @default.
- W4226135239 hasConcept C11413529 @default.
- W4226135239 hasConcept C120665830 @default.
- W4226135239 hasConcept C121332964 @default.
- W4226135239 hasConcept C124681953 @default.
- W4226135239 hasConcept C154945302 @default.
- W4226135239 hasConcept C155512373 @default.
- W4226135239 hasConcept C180205008 @default.
- W4226135239 hasConcept C18903297 @default.
- W4226135239 hasConcept C197424946 @default.
- W4226135239 hasConcept C199360897 @default.
- W4226135239 hasConcept C2779426996 @default.
- W4226135239 hasConcept C2779843651 @default.
- W4226135239 hasConcept C31258907 @default.
- W4226135239 hasConcept C41008148 @default.
- W4226135239 hasConcept C50644808 @default.
- W4226135239 hasConcept C51399673 @default.
- W4226135239 hasConcept C554190296 @default.
- W4226135239 hasConcept C76155785 @default.
- W4226135239 hasConcept C86803240 @default.
- W4226135239 hasConceptScore W4226135239C104267543 @default.
- W4226135239 hasConceptScore W4226135239C11413529 @default.
- W4226135239 hasConceptScore W4226135239C120665830 @default.
- W4226135239 hasConceptScore W4226135239C121332964 @default.
- W4226135239 hasConceptScore W4226135239C124681953 @default.
- W4226135239 hasConceptScore W4226135239C154945302 @default.
- W4226135239 hasConceptScore W4226135239C155512373 @default.
- W4226135239 hasConceptScore W4226135239C180205008 @default.
- W4226135239 hasConceptScore W4226135239C18903297 @default.
- W4226135239 hasConceptScore W4226135239C197424946 @default.
- W4226135239 hasConceptScore W4226135239C199360897 @default.
- W4226135239 hasConceptScore W4226135239C2779426996 @default.
- W4226135239 hasConceptScore W4226135239C2779843651 @default.
- W4226135239 hasConceptScore W4226135239C31258907 @default.
- W4226135239 hasConceptScore W4226135239C41008148 @default.
- W4226135239 hasConceptScore W4226135239C50644808 @default.
- W4226135239 hasConceptScore W4226135239C51399673 @default.
- W4226135239 hasConceptScore W4226135239C554190296 @default.
- W4226135239 hasConceptScore W4226135239C76155785 @default.
- W4226135239 hasConceptScore W4226135239C86803240 @default.
- W4226135239 hasFunder F4320321001 @default.
- W4226135239 hasIssue "9" @default.
- W4226135239 hasLocation W42261352391 @default.
- W4226135239 hasLocation W42261352392 @default.
- W4226135239 hasOpenAccess W4226135239 @default.
- W4226135239 hasPrimaryLocation W42261352391 @default.
- W4226135239 hasRelatedWork W1556284769 @default.
- W4226135239 hasRelatedWork W2021860788 @default.
- W4226135239 hasRelatedWork W2291912852 @default.
- W4226135239 hasRelatedWork W2367431474 @default.
- W4226135239 hasRelatedWork W2506552203 @default.
- W4226135239 hasRelatedWork W3173402141 @default.
- W4226135239 hasRelatedWork W3174971218 @default.
- W4226135239 hasRelatedWork W3210546714 @default.
- W4226135239 hasRelatedWork W336542070 @default.
- W4226135239 hasRelatedWork W803336390 @default.