Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226139354> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W4226139354 abstract "We present ANUBIS, a highly effective machine learning-based APT detection system. Our design philosophy for ANUBIS involves two principal components. Firstly, we intend ANUBIS to be effectively utilized by cyber-response teams. Therefore, prediction explainability is one of the main focuses of ANUBIS design. Secondly, ANUBIS uses system provenance graphs to capture causality and thereby achieves high detection performance. At the core of the predictive capability of ANUBIS, there is a Bayesian Neural Network that can tell how confident it is in its predictions. We evaluate ANUBIS against a recent APT dataset (DARPA OpTC) and show that ANUBIS can detect malicious activity akin to APT campaigns with high accuracy. Moreover, ANUBIS learns about high-level patterns that allow it to explain its predictions to threat analysts. The high predictive performance with explainable attack story reconstruction makes ANUBIS an effective tool to use for enterprise cyber defense." @default.
- W4226139354 created "2022-05-05" @default.
- W4226139354 creator A5069200365 @default.
- W4226139354 creator A5075654187 @default.
- W4226139354 creator A5085440973 @default.
- W4226139354 date "2022-04-25" @default.
- W4226139354 modified "2023-10-13" @default.
- W4226139354 title "ANUBIS" @default.
- W4226139354 cites W1572900211 @default.
- W4226139354 cites W2009232481 @default.
- W4226139354 cites W2089554624 @default.
- W4226139354 cites W2103823788 @default.
- W4226139354 cites W2118372007 @default.
- W4226139354 cites W2167332015 @default.
- W4226139354 cites W2284900416 @default.
- W4226139354 cites W2560810941 @default.
- W4226139354 cites W2755572540 @default.
- W4226139354 cites W2790557990 @default.
- W4226139354 cites W2794988934 @default.
- W4226139354 cites W2897662483 @default.
- W4226139354 cites W2910711617 @default.
- W4226139354 cites W2947745012 @default.
- W4226139354 cites W2962703433 @default.
- W4226139354 cites W3008508243 @default.
- W4226139354 cites W3099203541 @default.
- W4226139354 cites W3101089035 @default.
- W4226139354 cites W3172594102 @default.
- W4226139354 cites W3196640496 @default.
- W4226139354 cites W4245671428 @default.
- W4226139354 doi "https://doi.org/10.1145/3477314.3507097" @default.
- W4226139354 hasPublicationYear "2022" @default.
- W4226139354 type Work @default.
- W4226139354 citedByCount "8" @default.
- W4226139354 countsByYear W42261393542022 @default.
- W4226139354 countsByYear W42261393542023 @default.
- W4226139354 crossrefType "proceedings-article" @default.
- W4226139354 hasAuthorship W4226139354A5069200365 @default.
- W4226139354 hasAuthorship W4226139354A5075654187 @default.
- W4226139354 hasAuthorship W4226139354A5085440973 @default.
- W4226139354 hasBestOaLocation W42261393542 @default.
- W4226139354 hasConcept C154945302 @default.
- W4226139354 hasConcept C41008148 @default.
- W4226139354 hasConceptScore W4226139354C154945302 @default.
- W4226139354 hasConceptScore W4226139354C41008148 @default.
- W4226139354 hasLocation W42261393541 @default.
- W4226139354 hasLocation W42261393542 @default.
- W4226139354 hasLocation W42261393543 @default.
- W4226139354 hasOpenAccess W4226139354 @default.
- W4226139354 hasPrimaryLocation W42261393541 @default.
- W4226139354 hasRelatedWork W1596801655 @default.
- W4226139354 hasRelatedWork W2130043461 @default.
- W4226139354 hasRelatedWork W2350741829 @default.
- W4226139354 hasRelatedWork W2358668433 @default.
- W4226139354 hasRelatedWork W2376932109 @default.
- W4226139354 hasRelatedWork W2382290278 @default.
- W4226139354 hasRelatedWork W2390279801 @default.
- W4226139354 hasRelatedWork W2748952813 @default.
- W4226139354 hasRelatedWork W2899084033 @default.
- W4226139354 hasRelatedWork W2530322880 @default.
- W4226139354 isParatext "false" @default.
- W4226139354 isRetracted "false" @default.
- W4226139354 workType "article" @default.