Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226140354> ?p ?o ?g. }
- W4226140354 endingPage "25" @default.
- W4226140354 startingPage "13" @default.
- W4226140354 abstract "In recent years, big data in health care is commonly used for the prediction of diseases. The most common cancer is breast cancer infections of metropolitan Indian women as well as in women worldwide with a broadly factor occurrence among nations and regions. According to WHO, among 14% of all cancer tumours in women breast cancer is well-known cancer in women in India also. Few researches have been done on breast cancer prediction on Big data. Big data is now triggering a revolution in healthcare, resulting in better and more optimized outcomes. Rapid technological advancements have increased data generation; EHR (Electronic Health Record) systems produce a massive amount of patient-level data. In the healthcare industry, applications of big data will help to improve outcomes. However, the traditional prediction models have less efficiency in terms of accuracy and error rate. This review article is about the comparative assessment of complex data mining, machine learning, deep learning models used for identifying breast cancer because accuracy rate of any particular algorithm depends on various factors such as implementation framework, datasets(small or large),types of dataset used(attribute based or image based)etc. Aim of this review article is to help to choose the appropriate breast cancer prediction techniques specifically in the Big data environment to produce effective and efficient result, Because “Early detection is the key to prevention-in case of any cancer”." @default.
- W4226140354 created "2022-05-05" @default.
- W4226140354 creator A5011020166 @default.
- W4226140354 creator A5026456703 @default.
- W4226140354 creator A5037222582 @default.
- W4226140354 creator A5055965654 @default.
- W4226140354 creator A5057757150 @default.
- W4226140354 date "2022-03-31" @default.
- W4226140354 modified "2023-10-14" @default.
- W4226140354 title "A Comprehensive Review Study on: Optimized Data Mining, Machine Learning and Deep Learning Techniques for Breast Cancer Prediction in Big Data Context" @default.
- W4226140354 cites W2042025453 @default.
- W4226140354 cites W2370924594 @default.
- W4226140354 cites W2604686853 @default.
- W4226140354 cites W2621586148 @default.
- W4226140354 cites W2746217632 @default.
- W4226140354 cites W2791030877 @default.
- W4226140354 cites W2806359329 @default.
- W4226140354 cites W2806419994 @default.
- W4226140354 cites W2889646458 @default.
- W4226140354 cites W2899432087 @default.
- W4226140354 cites W2906221808 @default.
- W4226140354 cites W2907031566 @default.
- W4226140354 cites W2908849530 @default.
- W4226140354 cites W2914383167 @default.
- W4226140354 cites W2914899668 @default.
- W4226140354 cites W2936214295 @default.
- W4226140354 cites W2940689983 @default.
- W4226140354 cites W2944939776 @default.
- W4226140354 cites W2945819472 @default.
- W4226140354 cites W2951404122 @default.
- W4226140354 cites W2952493603 @default.
- W4226140354 cites W2952523812 @default.
- W4226140354 cites W2953605441 @default.
- W4226140354 cites W2964562366 @default.
- W4226140354 cites W2965231525 @default.
- W4226140354 cites W2968058863 @default.
- W4226140354 cites W2972736028 @default.
- W4226140354 cites W2973569693 @default.
- W4226140354 cites W2979414334 @default.
- W4226140354 cites W2981089454 @default.
- W4226140354 cites W2982663567 @default.
- W4226140354 cites W2982822400 @default.
- W4226140354 cites W2988718426 @default.
- W4226140354 cites W2989134510 @default.
- W4226140354 cites W2989272346 @default.
- W4226140354 cites W2992252600 @default.
- W4226140354 cites W2993303538 @default.
- W4226140354 cites W3013538309 @default.
- W4226140354 cites W3021329907 @default.
- W4226140354 cites W3083171672 @default.
- W4226140354 cites W3104768730 @default.
- W4226140354 cites W3113014766 @default.
- W4226140354 cites W4243162126 @default.
- W4226140354 doi "https://doi.org/10.13005/bpj/2339" @default.
- W4226140354 hasPublicationYear "2022" @default.
- W4226140354 type Work @default.
- W4226140354 citedByCount "9" @default.
- W4226140354 countsByYear W42261403542022 @default.
- W4226140354 countsByYear W42261403542023 @default.
- W4226140354 crossrefType "journal-article" @default.
- W4226140354 hasAuthorship W4226140354A5011020166 @default.
- W4226140354 hasAuthorship W4226140354A5026456703 @default.
- W4226140354 hasAuthorship W4226140354A5037222582 @default.
- W4226140354 hasAuthorship W4226140354A5055965654 @default.
- W4226140354 hasAuthorship W4226140354A5057757150 @default.
- W4226140354 hasConcept C108583219 @default.
- W4226140354 hasConcept C119857082 @default.
- W4226140354 hasConcept C121608353 @default.
- W4226140354 hasConcept C124101348 @default.
- W4226140354 hasConcept C126322002 @default.
- W4226140354 hasConcept C151730666 @default.
- W4226140354 hasConcept C154945302 @default.
- W4226140354 hasConcept C160735492 @default.
- W4226140354 hasConcept C162324750 @default.
- W4226140354 hasConcept C2522767166 @default.
- W4226140354 hasConcept C2779343474 @default.
- W4226140354 hasConcept C41008148 @default.
- W4226140354 hasConcept C45804977 @default.
- W4226140354 hasConcept C50522688 @default.
- W4226140354 hasConcept C530470458 @default.
- W4226140354 hasConcept C71924100 @default.
- W4226140354 hasConcept C75684735 @default.
- W4226140354 hasConcept C86803240 @default.
- W4226140354 hasConceptScore W4226140354C108583219 @default.
- W4226140354 hasConceptScore W4226140354C119857082 @default.
- W4226140354 hasConceptScore W4226140354C121608353 @default.
- W4226140354 hasConceptScore W4226140354C124101348 @default.
- W4226140354 hasConceptScore W4226140354C126322002 @default.
- W4226140354 hasConceptScore W4226140354C151730666 @default.
- W4226140354 hasConceptScore W4226140354C154945302 @default.
- W4226140354 hasConceptScore W4226140354C160735492 @default.
- W4226140354 hasConceptScore W4226140354C162324750 @default.
- W4226140354 hasConceptScore W4226140354C2522767166 @default.
- W4226140354 hasConceptScore W4226140354C2779343474 @default.
- W4226140354 hasConceptScore W4226140354C41008148 @default.
- W4226140354 hasConceptScore W4226140354C45804977 @default.
- W4226140354 hasConceptScore W4226140354C50522688 @default.
- W4226140354 hasConceptScore W4226140354C530470458 @default.