Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226150059> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4226150059 endingPage "13" @default.
- W4226150059 startingPage "3" @default.
- W4226150059 abstract "Electroencephalography (EEG) is an effective tool for neurological disorders diagnosis such as seizures, chronic fatigue, sleep disorders, and behavioral abnormalities. Various artifacts types may impact EEG signals regardless the used, resulting in an erroneous diagnosis. Various data analysis tools have therefore been developed in the biomedical engineering literature to detect and/or remove these artifacts. In this sense, deep learning (DL) is one of the most promising methods. In this paper, we develop a novel method based on artifacts detection using a convolutional neural network (CNN) architecture. The available EEG data was collected using 32 channels from the Nihon Kohden Neurofax EEG-1200. The data are preprocessed and analyzed using our CNN to perform binary artifact detection. The suggested method highlights the best classification results with a maximal accuracy up to 99.20%." @default.
- W4226150059 created "2022-05-05" @default.
- W4226150059 creator A5021009158 @default.
- W4226150059 creator A5043087057 @default.
- W4226150059 creator A5059356428 @default.
- W4226150059 creator A5060820950 @default.
- W4226150059 creator A5072344919 @default.
- W4226150059 creator A5089303042 @default.
- W4226150059 creator A5090726519 @default.
- W4226150059 date "2022-01-01" @default.
- W4226150059 modified "2023-10-18" @default.
- W4226150059 title "A Convolutional Neural Network for Artifacts Detection in EEG Data" @default.
- W4226150059 cites W2043158732 @default.
- W4226150059 cites W2091837586 @default.
- W4226150059 cites W2142725378 @default.
- W4226150059 cites W2498061850 @default.
- W4226150059 cites W2768561679 @default.
- W4226150059 cites W2790960691 @default.
- W4226150059 cites W2905686860 @default.
- W4226150059 cites W2969925260 @default.
- W4226150059 cites W3011279076 @default.
- W4226150059 cites W3037168522 @default.
- W4226150059 cites W3038092919 @default.
- W4226150059 cites W3133565772 @default.
- W4226150059 cites W3161079408 @default.
- W4226150059 cites W4255626491 @default.
- W4226150059 doi "https://doi.org/10.1007/978-981-16-7618-5_1" @default.
- W4226150059 hasPublicationYear "2022" @default.
- W4226150059 type Work @default.
- W4226150059 citedByCount "2" @default.
- W4226150059 countsByYear W42261500592022 @default.
- W4226150059 countsByYear W42261500592023 @default.
- W4226150059 crossrefType "book-chapter" @default.
- W4226150059 hasAuthorship W4226150059A5021009158 @default.
- W4226150059 hasAuthorship W4226150059A5043087057 @default.
- W4226150059 hasAuthorship W4226150059A5059356428 @default.
- W4226150059 hasAuthorship W4226150059A5060820950 @default.
- W4226150059 hasAuthorship W4226150059A5072344919 @default.
- W4226150059 hasAuthorship W4226150059A5089303042 @default.
- W4226150059 hasAuthorship W4226150059A5090726519 @default.
- W4226150059 hasConcept C108583219 @default.
- W4226150059 hasConcept C12267149 @default.
- W4226150059 hasConcept C153180895 @default.
- W4226150059 hasConcept C154945302 @default.
- W4226150059 hasConcept C15744967 @default.
- W4226150059 hasConcept C169760540 @default.
- W4226150059 hasConcept C2779010991 @default.
- W4226150059 hasConcept C28490314 @default.
- W4226150059 hasConcept C41008148 @default.
- W4226150059 hasConcept C522805319 @default.
- W4226150059 hasConcept C66905080 @default.
- W4226150059 hasConcept C81363708 @default.
- W4226150059 hasConceptScore W4226150059C108583219 @default.
- W4226150059 hasConceptScore W4226150059C12267149 @default.
- W4226150059 hasConceptScore W4226150059C153180895 @default.
- W4226150059 hasConceptScore W4226150059C154945302 @default.
- W4226150059 hasConceptScore W4226150059C15744967 @default.
- W4226150059 hasConceptScore W4226150059C169760540 @default.
- W4226150059 hasConceptScore W4226150059C2779010991 @default.
- W4226150059 hasConceptScore W4226150059C28490314 @default.
- W4226150059 hasConceptScore W4226150059C41008148 @default.
- W4226150059 hasConceptScore W4226150059C522805319 @default.
- W4226150059 hasConceptScore W4226150059C66905080 @default.
- W4226150059 hasConceptScore W4226150059C81363708 @default.
- W4226150059 hasLocation W42261500591 @default.
- W4226150059 hasOpenAccess W4226150059 @default.
- W4226150059 hasPrimaryLocation W42261500591 @default.
- W4226150059 hasRelatedWork W2732542196 @default.
- W4226150059 hasRelatedWork W2738221750 @default.
- W4226150059 hasRelatedWork W3156786002 @default.
- W4226150059 hasRelatedWork W4226150059 @default.
- W4226150059 hasRelatedWork W4312417841 @default.
- W4226150059 hasRelatedWork W4315694979 @default.
- W4226150059 hasRelatedWork W4316077036 @default.
- W4226150059 hasRelatedWork W4321369474 @default.
- W4226150059 hasRelatedWork W4372056431 @default.
- W4226150059 hasRelatedWork W564581980 @default.
- W4226150059 isParatext "false" @default.
- W4226150059 isRetracted "false" @default.
- W4226150059 workType "book-chapter" @default.