Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226156629> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W4226156629 endingPage "59" @default.
- W4226156629 startingPage "25" @default.
- W4226156629 abstract "As of today, increased air pollution has disrupted the air quality levels, deeming the air unsafe to breathe. Traditional systems are hefty, costly, sparsely distributed, and do not provide ubiquitous coverage. The interpolation used to supplement low spatial coverage induces uncertainty especially for pollutants whose concentrations vary significantly over small distances. This chapter proposes a solution that uses satellite images and machine/deep learning models to timely forecast air quality. For this study, Lahore is chosen as a study area. Sentinel 5-Precursor is used to gather data for Sulphur Dioxide (SO2), Nitrogen Dioxide (NO2), and Carbon Monoxide (CO) for years 2018-2021. The data is processed for several AI models, where convolutional neural networks (CNN) performed the best with mean squared error (MSE) 0.0003 for the pollutants. The air quality index (AQI) is calculated and is shown on web portal for data visualization. The trend of air quality during COVID-19 lockdowns is studied as well, which showed reduced levels of NO2 in regions where proper lockdown is observed." @default.
- W4226156629 created "2022-05-05" @default.
- W4226156629 creator A5000063908 @default.
- W4226156629 creator A5000898428 @default.
- W4226156629 creator A5022751242 @default.
- W4226156629 creator A5057042065 @default.
- W4226156629 date "2022-01-01" @default.
- W4226156629 modified "2023-10-17" @default.
- W4226156629 title "Temporal Analysis and Prediction of Ambient Air Quality Using Remote Sensing, Deep Learning, and Geospatial Technologies" @default.
- W4226156629 cites W1542026443 @default.
- W4226156629 cites W2036487187 @default.
- W4226156629 cites W2048269636 @default.
- W4226156629 cites W2059398287 @default.
- W4226156629 cites W2063845097 @default.
- W4226156629 cites W2079329311 @default.
- W4226156629 cites W2080754937 @default.
- W4226156629 cites W2947368602 @default.
- W4226156629 cites W2963835240 @default.
- W4226156629 cites W2964901901 @default.
- W4226156629 cites W3024586220 @default.
- W4226156629 cites W3082941028 @default.
- W4226156629 cites W3164400097 @default.
- W4226156629 cites W3194082355 @default.
- W4226156629 cites W3202825773 @default.
- W4226156629 doi "https://doi.org/10.4018/978-1-7998-9201-4.ch002" @default.
- W4226156629 hasPublicationYear "2022" @default.
- W4226156629 type Work @default.
- W4226156629 citedByCount "0" @default.
- W4226156629 crossrefType "book-chapter" @default.
- W4226156629 hasAuthorship W4226156629A5000063908 @default.
- W4226156629 hasAuthorship W4226156629A5000898428 @default.
- W4226156629 hasAuthorship W4226156629A5022751242 @default.
- W4226156629 hasAuthorship W4226156629A5057042065 @default.
- W4226156629 hasConcept C104114177 @default.
- W4226156629 hasConcept C105795698 @default.
- W4226156629 hasConcept C108583219 @default.
- W4226156629 hasConcept C119857082 @default.
- W4226156629 hasConcept C126314574 @default.
- W4226156629 hasConcept C137800194 @default.
- W4226156629 hasConcept C139945424 @default.
- W4226156629 hasConcept C153294291 @default.
- W4226156629 hasConcept C154945302 @default.
- W4226156629 hasConcept C178790620 @default.
- W4226156629 hasConcept C185592680 @default.
- W4226156629 hasConcept C205649164 @default.
- W4226156629 hasConcept C2780723490 @default.
- W4226156629 hasConcept C33923547 @default.
- W4226156629 hasConcept C39432304 @default.
- W4226156629 hasConcept C41008148 @default.
- W4226156629 hasConcept C559116025 @default.
- W4226156629 hasConcept C62649853 @default.
- W4226156629 hasConcept C81363708 @default.
- W4226156629 hasConcept C82685317 @default.
- W4226156629 hasConcept C9770341 @default.
- W4226156629 hasConceptScore W4226156629C104114177 @default.
- W4226156629 hasConceptScore W4226156629C105795698 @default.
- W4226156629 hasConceptScore W4226156629C108583219 @default.
- W4226156629 hasConceptScore W4226156629C119857082 @default.
- W4226156629 hasConceptScore W4226156629C126314574 @default.
- W4226156629 hasConceptScore W4226156629C137800194 @default.
- W4226156629 hasConceptScore W4226156629C139945424 @default.
- W4226156629 hasConceptScore W4226156629C153294291 @default.
- W4226156629 hasConceptScore W4226156629C154945302 @default.
- W4226156629 hasConceptScore W4226156629C178790620 @default.
- W4226156629 hasConceptScore W4226156629C185592680 @default.
- W4226156629 hasConceptScore W4226156629C205649164 @default.
- W4226156629 hasConceptScore W4226156629C2780723490 @default.
- W4226156629 hasConceptScore W4226156629C33923547 @default.
- W4226156629 hasConceptScore W4226156629C39432304 @default.
- W4226156629 hasConceptScore W4226156629C41008148 @default.
- W4226156629 hasConceptScore W4226156629C559116025 @default.
- W4226156629 hasConceptScore W4226156629C62649853 @default.
- W4226156629 hasConceptScore W4226156629C81363708 @default.
- W4226156629 hasConceptScore W4226156629C82685317 @default.
- W4226156629 hasConceptScore W4226156629C9770341 @default.
- W4226156629 hasLocation W42261566291 @default.
- W4226156629 hasOpenAccess W4226156629 @default.
- W4226156629 hasPrimaryLocation W42261566291 @default.
- W4226156629 hasRelatedWork W1440920288 @default.
- W4226156629 hasRelatedWork W1995607932 @default.
- W4226156629 hasRelatedWork W2025865921 @default.
- W4226156629 hasRelatedWork W2031863664 @default.
- W4226156629 hasRelatedWork W2354679988 @default.
- W4226156629 hasRelatedWork W2901506125 @default.
- W4226156629 hasRelatedWork W2904397823 @default.
- W4226156629 hasRelatedWork W3176199159 @default.
- W4226156629 hasRelatedWork W4210531193 @default.
- W4226156629 hasRelatedWork W4310222785 @default.
- W4226156629 isParatext "false" @default.
- W4226156629 isRetracted "false" @default.
- W4226156629 workType "book-chapter" @default.