Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226156916> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W4226156916 abstract "Abstract Extracting accurate biological information from complex datasets is a main challenge in 1 H-NMR-based metabolomics research. One of the crucial steps to achieve this goal is to apply an appropriate pretreatment method before multivariate data analysis in 1 H-NMR based metabolomics studies. One of the most important pretreatment methods in metabolomics studies is scaling techniques. In this study, the effect of different pretreatment approaches such as auto-, pareto-, level-, range- and vast-scaling in addition to mean-centering are investigated on both experimental and simulated datasets. The goal is linear classification modeling of the toxicity induced by different doses of graphene oxide (GO) in metabolomics context, employing partial least squares- discriminant analysis) PLS-DA). The experimental dataset includes 1 H-NMR spectra of mice serum samples exposed to different doses of GO nano-sheets. Here, it is shown that type of applied pre-treatment method has a considerable effect on data analysis results. In this study, auto-, pareto- and vast-scaling lead to a better separation of classes using PLS-DA modeling and PCA. From the results of this study, it was concluded that there is no general rule for the selection of the best scaling method in the analysis of 1 H-NMR metabolomics datasets, and different ways of scaling should be tested." @default.
- W4226156916 created "2022-05-05" @default.
- W4226156916 creator A5030987569 @default.
- W4226156916 creator A5059644586 @default.
- W4226156916 creator A5080212263 @default.
- W4226156916 date "2022-04-20" @default.
- W4226156916 modified "2023-10-17" @default.
- W4226156916 title "Effect of different pretreatment methods on classification of serum samples measured with 1 H-NMR" @default.
- W4226156916 doi "https://doi.org/10.21203/rs.3.rs-1496886/v2" @default.
- W4226156916 hasPublicationYear "2022" @default.
- W4226156916 type Work @default.
- W4226156916 citedByCount "1" @default.
- W4226156916 countsByYear W42261569162023 @default.
- W4226156916 crossrefType "posted-content" @default.
- W4226156916 hasAuthorship W4226156916A5030987569 @default.
- W4226156916 hasAuthorship W4226156916A5059644586 @default.
- W4226156916 hasAuthorship W4226156916A5080212263 @default.
- W4226156916 hasBestOaLocation W42261569161 @default.
- W4226156916 hasConcept C103319777 @default.
- W4226156916 hasConcept C105795698 @default.
- W4226156916 hasConcept C119857082 @default.
- W4226156916 hasConcept C137635306 @default.
- W4226156916 hasConcept C151730666 @default.
- W4226156916 hasConcept C154945302 @default.
- W4226156916 hasConcept C161584116 @default.
- W4226156916 hasConcept C185592680 @default.
- W4226156916 hasConcept C186060115 @default.
- W4226156916 hasConcept C21565614 @default.
- W4226156916 hasConcept C22354355 @default.
- W4226156916 hasConcept C2524010 @default.
- W4226156916 hasConcept C2779343474 @default.
- W4226156916 hasConcept C33923547 @default.
- W4226156916 hasConcept C41008148 @default.
- W4226156916 hasConcept C43617362 @default.
- W4226156916 hasConcept C69738355 @default.
- W4226156916 hasConcept C71240020 @default.
- W4226156916 hasConcept C86803240 @default.
- W4226156916 hasConcept C99844830 @default.
- W4226156916 hasConceptScore W4226156916C103319777 @default.
- W4226156916 hasConceptScore W4226156916C105795698 @default.
- W4226156916 hasConceptScore W4226156916C119857082 @default.
- W4226156916 hasConceptScore W4226156916C137635306 @default.
- W4226156916 hasConceptScore W4226156916C151730666 @default.
- W4226156916 hasConceptScore W4226156916C154945302 @default.
- W4226156916 hasConceptScore W4226156916C161584116 @default.
- W4226156916 hasConceptScore W4226156916C185592680 @default.
- W4226156916 hasConceptScore W4226156916C186060115 @default.
- W4226156916 hasConceptScore W4226156916C21565614 @default.
- W4226156916 hasConceptScore W4226156916C22354355 @default.
- W4226156916 hasConceptScore W4226156916C2524010 @default.
- W4226156916 hasConceptScore W4226156916C2779343474 @default.
- W4226156916 hasConceptScore W4226156916C33923547 @default.
- W4226156916 hasConceptScore W4226156916C41008148 @default.
- W4226156916 hasConceptScore W4226156916C43617362 @default.
- W4226156916 hasConceptScore W4226156916C69738355 @default.
- W4226156916 hasConceptScore W4226156916C71240020 @default.
- W4226156916 hasConceptScore W4226156916C86803240 @default.
- W4226156916 hasConceptScore W4226156916C99844830 @default.
- W4226156916 hasLocation W42261569161 @default.
- W4226156916 hasOpenAccess W4226156916 @default.
- W4226156916 hasPrimaryLocation W42261569161 @default.
- W4226156916 hasRelatedWork W1972939843 @default.
- W4226156916 hasRelatedWork W1996594529 @default.
- W4226156916 hasRelatedWork W2066611323 @default.
- W4226156916 hasRelatedWork W2083453024 @default.
- W4226156916 hasRelatedWork W2085370119 @default.
- W4226156916 hasRelatedWork W2105514151 @default.
- W4226156916 hasRelatedWork W2462753217 @default.
- W4226156916 hasRelatedWork W3208902840 @default.
- W4226156916 hasRelatedWork W4213285912 @default.
- W4226156916 hasRelatedWork W4312049448 @default.
- W4226156916 isParatext "false" @default.
- W4226156916 isRetracted "false" @default.
- W4226156916 workType "article" @default.