Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226156949> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4226156949 abstract "Planning based on long and short term time series forecasts is a common practice across many industries. In this context, temporal aggregation and reconciliation techniques have been useful in improving forecasts, reducing model uncertainty, and providing a coherent forecast across different time horizons. However, an underlying assumption spanning all these techniques is the complete availability of data across all levels of the temporal hierarchy, while this offers mathematical convenience but most of the time low frequency data is partially completed and it is not available while forecasting. On the other hand, high frequency data can significantly change in a scenario like the COVID pandemic and this change can be used to improve forecasts that will otherwise significantly diverge from long term actuals. We propose a dynamic reconciliation method whereby we formulate the problem of informing low frequency forecasts based on high frequency actuals as a Markov Decision Process (MDP) allowing for the fact that we do not have complete information about the dynamics of the process. This allows us to have the best long term estimates based on the most recent data available even if the low frequency cycles have only been partially completed. The MDP has been solved using a Time Differenced Reinforcement learning (TDRL) approach with customizable actions and improves the long terms forecasts dramatically as compared to relying solely on historical low frequency data. The result also underscores the fact that while low frequency forecasts can improve the high frequency forecasts as mentioned in the temporal reconciliation literature (based on the assumption that low frequency forecasts have lower noise to signal ratio) the high frequency forecasts can also be used to inform the low frequency forecasts." @default.
- W4226156949 created "2022-05-05" @default.
- W4226156949 creator A5000750282 @default.
- W4226156949 creator A5064707969 @default.
- W4226156949 creator A5065251474 @default.
- W4226156949 creator A5075372536 @default.
- W4226156949 date "2022-01-28" @default.
- W4226156949 modified "2023-09-27" @default.
- W4226156949 title "Dynamic Temporal Reconciliation by Reinforcement learning" @default.
- W4226156949 doi "https://doi.org/10.48550/arxiv.2201.11964" @default.
- W4226156949 hasPublicationYear "2022" @default.
- W4226156949 type Work @default.
- W4226156949 citedByCount "0" @default.
- W4226156949 crossrefType "posted-content" @default.
- W4226156949 hasAuthorship W4226156949A5000750282 @default.
- W4226156949 hasAuthorship W4226156949A5064707969 @default.
- W4226156949 hasAuthorship W4226156949A5065251474 @default.
- W4226156949 hasAuthorship W4226156949A5075372536 @default.
- W4226156949 hasBestOaLocation W42261569491 @default.
- W4226156949 hasConcept C105795698 @default.
- W4226156949 hasConcept C106189395 @default.
- W4226156949 hasConcept C111919701 @default.
- W4226156949 hasConcept C121332964 @default.
- W4226156949 hasConcept C149782125 @default.
- W4226156949 hasConcept C154945302 @default.
- W4226156949 hasConcept C159886148 @default.
- W4226156949 hasConcept C162324750 @default.
- W4226156949 hasConcept C166957645 @default.
- W4226156949 hasConcept C205649164 @default.
- W4226156949 hasConcept C2779343474 @default.
- W4226156949 hasConcept C31170391 @default.
- W4226156949 hasConcept C33923547 @default.
- W4226156949 hasConcept C34447519 @default.
- W4226156949 hasConcept C41008148 @default.
- W4226156949 hasConcept C61797465 @default.
- W4226156949 hasConcept C62520636 @default.
- W4226156949 hasConcept C97541855 @default.
- W4226156949 hasConcept C98045186 @default.
- W4226156949 hasConceptScore W4226156949C105795698 @default.
- W4226156949 hasConceptScore W4226156949C106189395 @default.
- W4226156949 hasConceptScore W4226156949C111919701 @default.
- W4226156949 hasConceptScore W4226156949C121332964 @default.
- W4226156949 hasConceptScore W4226156949C149782125 @default.
- W4226156949 hasConceptScore W4226156949C154945302 @default.
- W4226156949 hasConceptScore W4226156949C159886148 @default.
- W4226156949 hasConceptScore W4226156949C162324750 @default.
- W4226156949 hasConceptScore W4226156949C166957645 @default.
- W4226156949 hasConceptScore W4226156949C205649164 @default.
- W4226156949 hasConceptScore W4226156949C2779343474 @default.
- W4226156949 hasConceptScore W4226156949C31170391 @default.
- W4226156949 hasConceptScore W4226156949C33923547 @default.
- W4226156949 hasConceptScore W4226156949C34447519 @default.
- W4226156949 hasConceptScore W4226156949C41008148 @default.
- W4226156949 hasConceptScore W4226156949C61797465 @default.
- W4226156949 hasConceptScore W4226156949C62520636 @default.
- W4226156949 hasConceptScore W4226156949C97541855 @default.
- W4226156949 hasConceptScore W4226156949C98045186 @default.
- W4226156949 hasLocation W42261569491 @default.
- W4226156949 hasOpenAccess W4226156949 @default.
- W4226156949 hasPrimaryLocation W42261569491 @default.
- W4226156949 hasRelatedWork W1556532828 @default.
- W4226156949 hasRelatedWork W1574991376 @default.
- W4226156949 hasRelatedWork W192468626 @default.
- W4226156949 hasRelatedWork W1985560493 @default.
- W4226156949 hasRelatedWork W2353325705 @default.
- W4226156949 hasRelatedWork W2937181779 @default.
- W4226156949 hasRelatedWork W3096874164 @default.
- W4226156949 hasRelatedWork W3213838085 @default.
- W4226156949 hasRelatedWork W3213843225 @default.
- W4226156949 hasRelatedWork W4285605464 @default.
- W4226156949 isParatext "false" @default.
- W4226156949 isRetracted "false" @default.
- W4226156949 workType "article" @default.