Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226169013> ?p ?o ?g. }
- W4226169013 endingPage "7760" @default.
- W4226169013 startingPage "7746" @default.
- W4226169013 abstract "Training an interpretable deep net to embody its theoretical advantages is difficult but extremely important in the community of machine learning. In this article, noticing the importance of spatial sparseness in signal and image processing, we develop a constructive approach to generate a deep net to capture the spatial sparseness feature. We conduct both theoretical analysis and numerical verifications to show the power of the constructive approach. Theoretically, we prove that the constructive approach can yield a deep net estimate that achieves the optimal generalization error bounds in the framework of learning theory. Numerically, we show that the constructive approach is essentially better than shallow learning in the sense that it provides better prediction accuracy with less training time." @default.
- W4226169013 created "2022-05-05" @default.
- W4226169013 creator A5010673255 @default.
- W4226169013 creator A5022287632 @default.
- W4226169013 creator A5052304130 @default.
- W4226169013 date "2023-10-01" @default.
- W4226169013 modified "2023-10-16" @default.
- W4226169013 title "Construction of Deep ReLU Nets for Spatially Sparse Learning" @default.
- W4226169013 cites W1484867920 @default.
- W4226169013 cites W1572121205 @default.
- W4226169013 cites W1978397327 @default.
- W4226169013 cites W1996388931 @default.
- W4226169013 cites W2069959554 @default.
- W4226169013 cites W2103955025 @default.
- W4226169013 cites W2110652811 @default.
- W4226169013 cites W2136922672 @default.
- W4226169013 cites W2142211803 @default.
- W4226169013 cites W2153635508 @default.
- W4226169013 cites W2158581396 @default.
- W4226169013 cites W2257979135 @default.
- W4226169013 cites W2267573953 @default.
- W4226169013 cites W2559431973 @default.
- W4226169013 cites W2734819659 @default.
- W4226169013 cites W2789237874 @default.
- W4226169013 cites W2909118213 @default.
- W4226169013 cites W2962949242 @default.
- W4226169013 cites W2963482148 @default.
- W4226169013 cites W2963626582 @default.
- W4226169013 cites W2963694768 @default.
- W4226169013 cites W2993802668 @default.
- W4226169013 cites W3002335888 @default.
- W4226169013 cites W3102511045 @default.
- W4226169013 cites W3105432754 @default.
- W4226169013 cites W3106455851 @default.
- W4226169013 cites W4210327527 @default.
- W4226169013 cites W4226270014 @default.
- W4226169013 cites W4242686374 @default.
- W4226169013 cites W4245558064 @default.
- W4226169013 cites W4250955649 @default.
- W4226169013 cites W913685725 @default.
- W4226169013 doi "https://doi.org/10.1109/tnnls.2022.3146062" @default.
- W4226169013 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35157593" @default.
- W4226169013 hasPublicationYear "2023" @default.
- W4226169013 type Work @default.
- W4226169013 citedByCount "2" @default.
- W4226169013 countsByYear W42261690132023 @default.
- W4226169013 crossrefType "journal-article" @default.
- W4226169013 hasAuthorship W4226169013A5010673255 @default.
- W4226169013 hasAuthorship W4226169013A5022287632 @default.
- W4226169013 hasAuthorship W4226169013A5052304130 @default.
- W4226169013 hasConcept C108583219 @default.
- W4226169013 hasConcept C111919701 @default.
- W4226169013 hasConcept C11413529 @default.
- W4226169013 hasConcept C119857082 @default.
- W4226169013 hasConcept C134306372 @default.
- W4226169013 hasConcept C138885662 @default.
- W4226169013 hasConcept C14166107 @default.
- W4226169013 hasConcept C153180895 @default.
- W4226169013 hasConcept C154945302 @default.
- W4226169013 hasConcept C177148314 @default.
- W4226169013 hasConcept C2524010 @default.
- W4226169013 hasConcept C2776401178 @default.
- W4226169013 hasConcept C2778701210 @default.
- W4226169013 hasConcept C33923547 @default.
- W4226169013 hasConcept C41008148 @default.
- W4226169013 hasConcept C41895202 @default.
- W4226169013 hasConcept C98045186 @default.
- W4226169013 hasConceptScore W4226169013C108583219 @default.
- W4226169013 hasConceptScore W4226169013C111919701 @default.
- W4226169013 hasConceptScore W4226169013C11413529 @default.
- W4226169013 hasConceptScore W4226169013C119857082 @default.
- W4226169013 hasConceptScore W4226169013C134306372 @default.
- W4226169013 hasConceptScore W4226169013C138885662 @default.
- W4226169013 hasConceptScore W4226169013C14166107 @default.
- W4226169013 hasConceptScore W4226169013C153180895 @default.
- W4226169013 hasConceptScore W4226169013C154945302 @default.
- W4226169013 hasConceptScore W4226169013C177148314 @default.
- W4226169013 hasConceptScore W4226169013C2524010 @default.
- W4226169013 hasConceptScore W4226169013C2776401178 @default.
- W4226169013 hasConceptScore W4226169013C2778701210 @default.
- W4226169013 hasConceptScore W4226169013C33923547 @default.
- W4226169013 hasConceptScore W4226169013C41008148 @default.
- W4226169013 hasConceptScore W4226169013C41895202 @default.
- W4226169013 hasConceptScore W4226169013C98045186 @default.
- W4226169013 hasFunder F4320321001 @default.
- W4226169013 hasIssue "10" @default.
- W4226169013 hasLocation W42261690131 @default.
- W4226169013 hasLocation W42261690132 @default.
- W4226169013 hasOpenAccess W4226169013 @default.
- W4226169013 hasPrimaryLocation W42261690131 @default.
- W4226169013 hasRelatedWork W160889949 @default.
- W4226169013 hasRelatedWork W2113626999 @default.
- W4226169013 hasRelatedWork W2364696089 @default.
- W4226169013 hasRelatedWork W2369004811 @default.
- W4226169013 hasRelatedWork W2377770720 @default.
- W4226169013 hasRelatedWork W2392500469 @default.
- W4226169013 hasRelatedWork W309910862 @default.
- W4226169013 hasRelatedWork W3195956009 @default.