Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226170910> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4226170910 endingPage "e0247286" @default.
- W4226170910 startingPage "e0247286" @default.
- W4226170910 abstract "Rare disease clinical trials are constrained to small sample sizes and may lack placebo-control, leading to challenges in drug development. This paper proposes a Bayesian model-based framework for early go/no-go decision making in rare disease drug development, using Duchenne muscular dystrophy (DMD) as an example. Early go/no-go decisions were based on projections of long-term functional outcomes from a Bayesian model-based analysis of short-term trial data informed by prior knowledge based on 6MWT natural history literature data in DMD patients. Frequentist hypothesis tests were also applied as a reference analysis method. A number of combinations of hypothetical trial designs, drug effects and cohort comparison methods were assessed. The proposed Bayesian model-based framework was superior to the frequentist method for making go/no-go decisions across all trial designs and cohort comparison methods in DMD. The average decision accuracy rates across all trial designs for the Bayesian and frequentist analysis methods were 45.8 and 8.98%, respectively. A decision accuracy rate of at least 50% was achieved for 42 and 7% of the trial designs under the Bayesian and frequentist analysis methods, respectively. The frequentist method was limited to the short-term trial data only, while the Bayesian methods were informed with both the short-term data and prior information. The specific results of the DMD case study were limited due to incomplete specification of individual-specific covariates in the natural history literature data and should be reevaluated using a full natural history dataset. These limitations aside, the framework presented provides a proof of concept for the utility of Bayesian model-based methods for decision making in rare disease trials." @default.
- W4226170910 created "2022-05-05" @default.
- W4226170910 creator A5019899259 @default.
- W4226170910 creator A5073328970 @default.
- W4226170910 creator A5083320220 @default.
- W4226170910 date "2022-04-28" @default.
- W4226170910 modified "2023-09-25" @default.
- W4226170910 title "Bayesian modeling and simulation to inform rare disease drug development early decision-making: Application to Duchenne muscular dystrophy" @default.
- W4226170910 cites W1508659364 @default.
- W4226170910 cites W1524530894 @default.
- W4226170910 cites W1533447420 @default.
- W4226170910 cites W1951817210 @default.
- W4226170910 cites W2020710343 @default.
- W4226170910 cites W2031634153 @default.
- W4226170910 cites W2058459242 @default.
- W4226170910 cites W2092564690 @default.
- W4226170910 cites W2103044501 @default.
- W4226170910 cites W2130365483 @default.
- W4226170910 cites W2164481873 @default.
- W4226170910 cites W2299125010 @default.
- W4226170910 cites W2402852458 @default.
- W4226170910 cites W2963973731 @default.
- W4226170910 cites W3003009002 @default.
- W4226170910 cites W3010225431 @default.
- W4226170910 cites W3030480398 @default.
- W4226170910 doi "https://doi.org/10.1371/journal.pone.0247286" @default.
- W4226170910 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35482633" @default.
- W4226170910 hasPublicationYear "2022" @default.
- W4226170910 type Work @default.
- W4226170910 citedByCount "2" @default.
- W4226170910 countsByYear W42261709102023 @default.
- W4226170910 crossrefType "journal-article" @default.
- W4226170910 hasAuthorship W4226170910A5019899259 @default.
- W4226170910 hasAuthorship W4226170910A5073328970 @default.
- W4226170910 hasAuthorship W4226170910A5083320220 @default.
- W4226170910 hasBestOaLocation W42261709101 @default.
- W4226170910 hasConcept C105795698 @default.
- W4226170910 hasConcept C107673813 @default.
- W4226170910 hasConcept C119857082 @default.
- W4226170910 hasConcept C126322002 @default.
- W4226170910 hasConcept C154945302 @default.
- W4226170910 hasConcept C160234255 @default.
- W4226170910 hasConcept C162376815 @default.
- W4226170910 hasConcept C207201462 @default.
- W4226170910 hasConcept C33923547 @default.
- W4226170910 hasConcept C41008148 @default.
- W4226170910 hasConcept C535046627 @default.
- W4226170910 hasConcept C71924100 @default.
- W4226170910 hasConceptScore W4226170910C105795698 @default.
- W4226170910 hasConceptScore W4226170910C107673813 @default.
- W4226170910 hasConceptScore W4226170910C119857082 @default.
- W4226170910 hasConceptScore W4226170910C126322002 @default.
- W4226170910 hasConceptScore W4226170910C154945302 @default.
- W4226170910 hasConceptScore W4226170910C160234255 @default.
- W4226170910 hasConceptScore W4226170910C162376815 @default.
- W4226170910 hasConceptScore W4226170910C207201462 @default.
- W4226170910 hasConceptScore W4226170910C33923547 @default.
- W4226170910 hasConceptScore W4226170910C41008148 @default.
- W4226170910 hasConceptScore W4226170910C535046627 @default.
- W4226170910 hasConceptScore W4226170910C71924100 @default.
- W4226170910 hasIssue "4" @default.
- W4226170910 hasLocation W42261709101 @default.
- W4226170910 hasLocation W42261709102 @default.
- W4226170910 hasLocation W42261709103 @default.
- W4226170910 hasLocation W42261709104 @default.
- W4226170910 hasOpenAccess W4226170910 @default.
- W4226170910 hasPrimaryLocation W42261709101 @default.
- W4226170910 hasRelatedWork W1534707875 @default.
- W4226170910 hasRelatedWork W2013262814 @default.
- W4226170910 hasRelatedWork W2154935119 @default.
- W4226170910 hasRelatedWork W2401153805 @default.
- W4226170910 hasRelatedWork W2598750737 @default.
- W4226170910 hasRelatedWork W2789413038 @default.
- W4226170910 hasRelatedWork W3037365039 @default.
- W4226170910 hasRelatedWork W3042703790 @default.
- W4226170910 hasRelatedWork W3044113243 @default.
- W4226170910 hasRelatedWork W4297513322 @default.
- W4226170910 hasVolume "17" @default.
- W4226170910 isParatext "false" @default.
- W4226170910 isRetracted "false" @default.
- W4226170910 workType "article" @default.