Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226172724> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4226172724 endingPage "2377" @default.
- W4226172724 startingPage "2364" @default.
- W4226172724 abstract "Wireless communication networks are conventionally designed in model-based approaches through utilizing performance metrics such as spectral efficiency and bit error rate. However, from the perspectives of wireless service operators, network-level performance metrics such as the 5%-tile user data rate and network capacity are far more important. Unfortunately, it is difficult to mathematically compute such network-level performance metrics in a model-based approach. To cope with this challenge, this work proposes a data-driven machine learning approach to predict these network-level performance metrics by utilizing customized deep neural networks (DNN). More specifically, the proposed approach capitalizes on cross-layer information from both the physical (PHY) layer and the medium access control (MAC) layer to train customized DNNs, which was considered impossible for the conventional model-based approach. Furthermore, a robust training algorithm called weighted co-teaching (WCT) is devised to overcome the noise existing in the network data due to the stochastic nature of the wireless networks. Extensive simulation results show that the proposed approach can accurately predict two network-level performance metrics, namely user average throughput (UAT) and acknowledgment (ACK)/negative acknowledgment (NACK) feedback with great accuracy." @default.
- W4226172724 created "2022-05-05" @default.
- W4226172724 creator A5011911524 @default.
- W4226172724 creator A5037704808 @default.
- W4226172724 creator A5040559125 @default.
- W4226172724 date "2022-07-01" @default.
- W4226172724 modified "2023-10-15" @default.
- W4226172724 title "Deep Learning in Network-Level Performance Prediction Using Cross-Layer Information" @default.
- W4226172724 cites W1496858976 @default.
- W4226172724 cites W1541375036 @default.
- W4226172724 cites W2029946638 @default.
- W4226172724 cites W2100755644 @default.
- W4226172724 cites W2109531496 @default.
- W4226172724 cites W2296073425 @default.
- W4226172724 cites W2552014313 @default.
- W4226172724 cites W2613969537 @default.
- W4226172724 cites W2616867685 @default.
- W4226172724 cites W2734408173 @default.
- W4226172724 cites W2767359317 @default.
- W4226172724 cites W2807900833 @default.
- W4226172724 cites W2817829786 @default.
- W4226172724 cites W2886115176 @default.
- W4226172724 cites W2890483234 @default.
- W4226172724 cites W2891171329 @default.
- W4226172724 cites W2899824937 @default.
- W4226172724 cites W2917973182 @default.
- W4226172724 cites W2922107649 @default.
- W4226172724 cites W2944891925 @default.
- W4226172724 cites W2962883549 @default.
- W4226172724 cites W2964324349 @default.
- W4226172724 cites W3013935691 @default.
- W4226172724 cites W3015841032 @default.
- W4226172724 cites W3045857701 @default.
- W4226172724 cites W3045915843 @default.
- W4226172724 cites W3049287738 @default.
- W4226172724 cites W3089739838 @default.
- W4226172724 cites W3104028856 @default.
- W4226172724 cites W3123268700 @default.
- W4226172724 cites W3124943657 @default.
- W4226172724 cites W4378974380 @default.
- W4226172724 doi "https://doi.org/10.1109/tnse.2022.3163274" @default.
- W4226172724 hasPublicationYear "2022" @default.
- W4226172724 type Work @default.
- W4226172724 citedByCount "0" @default.
- W4226172724 crossrefType "journal-article" @default.
- W4226172724 hasAuthorship W4226172724A5011911524 @default.
- W4226172724 hasAuthorship W4226172724A5037704808 @default.
- W4226172724 hasAuthorship W4226172724A5040559125 @default.
- W4226172724 hasConcept C108037233 @default.
- W4226172724 hasConcept C119857082 @default.
- W4226172724 hasConcept C120314980 @default.
- W4226172724 hasConcept C124101348 @default.
- W4226172724 hasConcept C154945302 @default.
- W4226172724 hasConcept C157764524 @default.
- W4226172724 hasConcept C19247436 @default.
- W4226172724 hasConcept C203274722 @default.
- W4226172724 hasConcept C31258907 @default.
- W4226172724 hasConcept C41008148 @default.
- W4226172724 hasConcept C50644808 @default.
- W4226172724 hasConcept C555944384 @default.
- W4226172724 hasConcept C76155785 @default.
- W4226172724 hasConceptScore W4226172724C108037233 @default.
- W4226172724 hasConceptScore W4226172724C119857082 @default.
- W4226172724 hasConceptScore W4226172724C120314980 @default.
- W4226172724 hasConceptScore W4226172724C124101348 @default.
- W4226172724 hasConceptScore W4226172724C154945302 @default.
- W4226172724 hasConceptScore W4226172724C157764524 @default.
- W4226172724 hasConceptScore W4226172724C19247436 @default.
- W4226172724 hasConceptScore W4226172724C203274722 @default.
- W4226172724 hasConceptScore W4226172724C31258907 @default.
- W4226172724 hasConceptScore W4226172724C41008148 @default.
- W4226172724 hasConceptScore W4226172724C50644808 @default.
- W4226172724 hasConceptScore W4226172724C555944384 @default.
- W4226172724 hasConceptScore W4226172724C76155785 @default.
- W4226172724 hasIssue "4" @default.
- W4226172724 hasLocation W42261727241 @default.
- W4226172724 hasOpenAccess W4226172724 @default.
- W4226172724 hasPrimaryLocation W42261727241 @default.
- W4226172724 hasRelatedWork W2162786224 @default.
- W4226172724 hasRelatedWork W2766262080 @default.
- W4226172724 hasRelatedWork W2949605195 @default.
- W4226172724 hasRelatedWork W2971048123 @default.
- W4226172724 hasRelatedWork W4211073790 @default.
- W4226172724 hasRelatedWork W4250238312 @default.
- W4226172724 hasRelatedWork W4302779852 @default.
- W4226172724 hasRelatedWork W4327767751 @default.
- W4226172724 hasRelatedWork W4385483253 @default.
- W4226172724 hasRelatedWork W4385638864 @default.
- W4226172724 hasVolume "9" @default.
- W4226172724 isParatext "false" @default.
- W4226172724 isRetracted "false" @default.
- W4226172724 workType "article" @default.