Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226175024> ?p ?o ?g. }
- W4226175024 endingPage "119025" @default.
- W4226175024 startingPage "119025" @default.
- W4226175024 abstract "Rooftop photovoltaic (PV) power generation is an important form of solar energy development, especially in rural areas where there is a large quantity of idle rural building roofs. Existing methods to estimate the spatial distribution of PV power generation potential are either unable to obtain spatial information or are too expensive to be applied in rural areas. Herein, we propose a novel approach to estimate the spatial distribution of the general potential of rural rooftop power from publicly available satellite images. We divide rural building roofs into three categories based on their orientation and roof angle and propose a revised U-Net deep learning network to extract roof images from satellite images at the macro level. Based on the rooftop detection, a calculation method for the potential area of the installed PV panel at the micro level was developed, considering different types of PV panels and their maintenance methods. By combining the above results and setting the solar radiation parameters and PV system efficiency, we can obtain the spatial distribution of the rooftop PV power generation potential in rural areas. This method is applied in northern China on a village and a town scale, and the overall accuracy of the revised U-Net model can reach over 92%. The spatial distribution information was analyzed and displayed. The annual average PV power generation potential ranges from 26.5 to 36.2 MWh per household and from 7.3 to 10 GWh per village." @default.
- W4226175024 created "2022-05-05" @default.
- W4226175024 creator A5027426068 @default.
- W4226175024 creator A5037318331 @default.
- W4226175024 creator A5044541039 @default.
- W4226175024 creator A5075006714 @default.
- W4226175024 date "2022-06-01" @default.
- W4226175024 modified "2023-10-03" @default.
- W4226175024 title "Estimating the spatial distribution of solar photovoltaic power generation potential on different types of rural rooftops using a deep learning network applied to satellite images" @default.
- W4226175024 cites W1901129140 @default.
- W4226175024 cites W1975688506 @default.
- W4226175024 cites W1986009302 @default.
- W4226175024 cites W1993693581 @default.
- W4226175024 cites W2010661004 @default.
- W4226175024 cites W2028104478 @default.
- W4226175024 cites W2057366933 @default.
- W4226175024 cites W2061509928 @default.
- W4226175024 cites W2105207776 @default.
- W4226175024 cites W2218407291 @default.
- W4226175024 cites W2336949982 @default.
- W4226175024 cites W2474018157 @default.
- W4226175024 cites W2501076117 @default.
- W4226175024 cites W2565802871 @default.
- W4226175024 cites W2621159406 @default.
- W4226175024 cites W2727721695 @default.
- W4226175024 cites W2736346657 @default.
- W4226175024 cites W2744810977 @default.
- W4226175024 cites W2780722608 @default.
- W4226175024 cites W2781973287 @default.
- W4226175024 cites W2810119917 @default.
- W4226175024 cites W2899842695 @default.
- W4226175024 cites W2900898997 @default.
- W4226175024 cites W2906865796 @default.
- W4226175024 cites W2921690725 @default.
- W4226175024 cites W2944410929 @default.
- W4226175024 cites W2944679233 @default.
- W4226175024 cites W2949247078 @default.
- W4226175024 cites W2952424961 @default.
- W4226175024 cites W2952833648 @default.
- W4226175024 cites W2966401691 @default.
- W4226175024 cites W2966574761 @default.
- W4226175024 cites W2968618703 @default.
- W4226175024 cites W2982002282 @default.
- W4226175024 cites W2983370139 @default.
- W4226175024 cites W2991279866 @default.
- W4226175024 cites W2999766874 @default.
- W4226175024 cites W3005845839 @default.
- W4226175024 cites W3011369530 @default.
- W4226175024 cites W3022397457 @default.
- W4226175024 cites W3037170308 @default.
- W4226175024 cites W3038565300 @default.
- W4226175024 cites W3042626417 @default.
- W4226175024 cites W3048614633 @default.
- W4226175024 cites W3049351146 @default.
- W4226175024 cites W3084146410 @default.
- W4226175024 cites W3086524888 @default.
- W4226175024 cites W3086730876 @default.
- W4226175024 cites W3093157450 @default.
- W4226175024 cites W3111827455 @default.
- W4226175024 cites W3112756409 @default.
- W4226175024 cites W3126721610 @default.
- W4226175024 cites W3143360500 @default.
- W4226175024 cites W3147862541 @default.
- W4226175024 cites W3171204491 @default.
- W4226175024 cites W3175150031 @default.
- W4226175024 cites W3183287963 @default.
- W4226175024 cites W3184938584 @default.
- W4226175024 cites W3191766264 @default.
- W4226175024 cites W3198922739 @default.
- W4226175024 cites W3207462328 @default.
- W4226175024 cites W3207670296 @default.
- W4226175024 cites W3215471820 @default.
- W4226175024 cites W4220676500 @default.
- W4226175024 cites W53957336 @default.
- W4226175024 doi "https://doi.org/10.1016/j.apenergy.2022.119025" @default.
- W4226175024 hasPublicationYear "2022" @default.
- W4226175024 type Work @default.
- W4226175024 citedByCount "27" @default.
- W4226175024 countsByYear W42261750242022 @default.
- W4226175024 countsByYear W42261750242023 @default.
- W4226175024 crossrefType "journal-article" @default.
- W4226175024 hasAuthorship W4226175024A5027426068 @default.
- W4226175024 hasAuthorship W4226175024A5037318331 @default.
- W4226175024 hasAuthorship W4226175024A5044541039 @default.
- W4226175024 hasAuthorship W4226175024A5075006714 @default.
- W4226175024 hasConcept C119599485 @default.
- W4226175024 hasConcept C121332964 @default.
- W4226175024 hasConcept C127413603 @default.
- W4226175024 hasConcept C146978453 @default.
- W4226175024 hasConcept C147176958 @default.
- W4226175024 hasConcept C153294291 @default.
- W4226175024 hasConcept C163258240 @default.
- W4226175024 hasConcept C19269812 @default.
- W4226175024 hasConcept C205649164 @default.
- W4226175024 hasConcept C2776748203 @default.
- W4226175024 hasConcept C2777016058 @default.
- W4226175024 hasConcept C39432304 @default.
- W4226175024 hasConcept C41291067 @default.