Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226175037> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W4226175037 endingPage "473" @default.
- W4226175037 startingPage "460" @default.
- W4226175037 abstract "Dumortier and Roussarie proposed a conjecture in their paper (2009, Discrete Con. Dyn. Sys., 2,723-781): For any $ qin {mathbb{N}} $, the Abelian integrals $ J_{2j+1}(h) = int_{gamma_h}x^{2j-1},mathrm dy $, $ j = 0, 1, 2, cdots, q $, form a strict Chebyshev system on intervals $ hin (0, frac{1}{2}] $, where $ gamma_h = {(x, y)| mathrm e^{-2y}(y+frac{1}{2}-x^2) = h} $. If this conjecture holds, then they obtain the precise upper bound of the number of limit cycles that appear near a slow-fast Hopf point of any codimension. In the present paper we develop a method to estimate the number of zeros of Abelian integrals and prove this conjecture." @default.
- W4226175037 created "2022-05-05" @default.
- W4226175037 creator A5033679688 @default.
- W4226175037 creator A5089271628 @default.
- W4226175037 date "2023-01-01" @default.
- W4226175037 modified "2023-10-04" @default.
- W4226175037 title "A proof of a Dumortier-Roussarie's conjecture" @default.
- W4226175037 cites W1987344369 @default.
- W4226175037 cites W2022850134 @default.
- W4226175037 cites W2034788479 @default.
- W4226175037 cites W2040736253 @default.
- W4226175037 cites W2048248040 @default.
- W4226175037 cites W2077367792 @default.
- W4226175037 cites W2583727266 @default.
- W4226175037 cites W2801534390 @default.
- W4226175037 cites W3011716461 @default.
- W4226175037 doi "https://doi.org/10.3934/dcdss.2022095" @default.
- W4226175037 hasPublicationYear "2023" @default.
- W4226175037 type Work @default.
- W4226175037 citedByCount "1" @default.
- W4226175037 countsByYear W42261750372022 @default.
- W4226175037 crossrefType "journal-article" @default.
- W4226175037 hasAuthorship W4226175037A5033679688 @default.
- W4226175037 hasAuthorship W4226175037A5089271628 @default.
- W4226175037 hasBestOaLocation W42261750371 @default.
- W4226175037 hasConcept C114614502 @default.
- W4226175037 hasConcept C134306372 @default.
- W4226175037 hasConcept C136170076 @default.
- W4226175037 hasConcept C151201525 @default.
- W4226175037 hasConcept C202444582 @default.
- W4226175037 hasConcept C206530611 @default.
- W4226175037 hasConcept C2780990831 @default.
- W4226175037 hasConcept C33923547 @default.
- W4226175037 hasConcept C77553402 @default.
- W4226175037 hasConcept C83979697 @default.
- W4226175037 hasConceptScore W4226175037C114614502 @default.
- W4226175037 hasConceptScore W4226175037C134306372 @default.
- W4226175037 hasConceptScore W4226175037C136170076 @default.
- W4226175037 hasConceptScore W4226175037C151201525 @default.
- W4226175037 hasConceptScore W4226175037C202444582 @default.
- W4226175037 hasConceptScore W4226175037C206530611 @default.
- W4226175037 hasConceptScore W4226175037C2780990831 @default.
- W4226175037 hasConceptScore W4226175037C33923547 @default.
- W4226175037 hasConceptScore W4226175037C77553402 @default.
- W4226175037 hasConceptScore W4226175037C83979697 @default.
- W4226175037 hasIssue "3&4" @default.
- W4226175037 hasLocation W42261750371 @default.
- W4226175037 hasOpenAccess W4226175037 @default.
- W4226175037 hasPrimaryLocation W42261750371 @default.
- W4226175037 hasRelatedWork W1982138688 @default.
- W4226175037 hasRelatedWork W2625223621 @default.
- W4226175037 hasRelatedWork W2949926336 @default.
- W4226175037 hasRelatedWork W2962878639 @default.
- W4226175037 hasRelatedWork W3121085461 @default.
- W4226175037 hasRelatedWork W3137155317 @default.
- W4226175037 hasRelatedWork W3183820686 @default.
- W4226175037 hasRelatedWork W3207412727 @default.
- W4226175037 hasRelatedWork W4226175037 @default.
- W4226175037 hasRelatedWork W4286901599 @default.
- W4226175037 hasVolume "16" @default.
- W4226175037 isParatext "false" @default.
- W4226175037 isRetracted "false" @default.
- W4226175037 workType "article" @default.