Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226177094> ?p ?o ?g. }
- W4226177094 endingPage "44944" @default.
- W4226177094 startingPage "44934" @default.
- W4226177094 abstract "Crop plant diseases are a significant threat to productivity and sustainable development in agriculture. Early prediction of disease attacks is useful for the effective control of the disease by taking proactive actions against their attacks. Modern Information and Communication Technologies (ICTs) have a predominant role in Precision Agriculture (PA) applications to support sustainable developments. There is an immense need for solutions for the early prediction of the disease attack for proactive control against the plant disease attack. The present solution of disease detection using the computer vision approach can only detect the existence of the disease once the disease has already appeared. This study aims to propose a Machine Learning (ML) approach for the early prediction of the probability of disease attack based on Internet of Things (IoT) directly sensed crop field environmental conditions. Plant disease life cycles are strongly correlated with environmental conditions. The crop field environmental conditions are used to predict the occurrence of plant diseases. The Multiple Linear Regression (MLR) is applied as the ML model due to the existence of a linear relationship between disease attack and environmental conditions. Internet of Things (IoT) based crop field environmental conditions help to accurately predict the occurrence of plant diseases using the ML approach. The proposed model is implemented for the prediction of blister blight ( <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>Exobasidium vexans</i> ) for tea ( <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>Camellia sinensis</i> ) plant to check the effectiveness of the proposed solution. The implementation of the proposed model from 2015 to 2019 reveals that the accuracy of prediction of occurrence of the disease reached up to 91% in 2019." @default.
- W4226177094 created "2022-05-05" @default.
- W4226177094 creator A5004439566 @default.
- W4226177094 creator A5011496776 @default.
- W4226177094 creator A5016019901 @default.
- W4226177094 creator A5044727888 @default.
- W4226177094 creator A5076497507 @default.
- W4226177094 creator A5087877468 @default.
- W4226177094 date "2022-01-01" @default.
- W4226177094 modified "2023-10-01" @default.
- W4226177094 title "Internet of Things (IoT) and Machine Learning Model of Plant Disease Prediction–Blister Blight for Tea Plant" @default.
- W4226177094 cites W2005579736 @default.
- W4226177094 cites W2081007135 @default.
- W4226177094 cites W2184531510 @default.
- W4226177094 cites W2537053780 @default.
- W4226177094 cites W2686735702 @default.
- W4226177094 cites W2789144226 @default.
- W4226177094 cites W2901108539 @default.
- W4226177094 cites W2912788594 @default.
- W4226177094 cites W2914622272 @default.
- W4226177094 cites W2940510698 @default.
- W4226177094 cites W2945461009 @default.
- W4226177094 cites W2945601725 @default.
- W4226177094 cites W2952264173 @default.
- W4226177094 cites W2954065794 @default.
- W4226177094 cites W2961092318 @default.
- W4226177094 cites W2967678982 @default.
- W4226177094 cites W2980702392 @default.
- W4226177094 cites W3010655531 @default.
- W4226177094 cites W3024464598 @default.
- W4226177094 cites W3035016091 @default.
- W4226177094 cites W3082480853 @default.
- W4226177094 cites W3085482408 @default.
- W4226177094 cites W3130071898 @default.
- W4226177094 cites W3137947626 @default.
- W4226177094 cites W3158638214 @default.
- W4226177094 cites W4236355884 @default.
- W4226177094 doi "https://doi.org/10.1109/access.2022.3169147" @default.
- W4226177094 hasPublicationYear "2022" @default.
- W4226177094 type Work @default.
- W4226177094 citedByCount "14" @default.
- W4226177094 countsByYear W42261770942022 @default.
- W4226177094 countsByYear W42261770942023 @default.
- W4226177094 crossrefType "journal-article" @default.
- W4226177094 hasAuthorship W4226177094A5004439566 @default.
- W4226177094 hasAuthorship W4226177094A5011496776 @default.
- W4226177094 hasAuthorship W4226177094A5016019901 @default.
- W4226177094 hasAuthorship W4226177094A5044727888 @default.
- W4226177094 hasAuthorship W4226177094A5076497507 @default.
- W4226177094 hasAuthorship W4226177094A5087877468 @default.
- W4226177094 hasBestOaLocation W42261770941 @default.
- W4226177094 hasConcept C110875604 @default.
- W4226177094 hasConcept C118518473 @default.
- W4226177094 hasConcept C119857082 @default.
- W4226177094 hasConcept C127413603 @default.
- W4226177094 hasConcept C136764020 @default.
- W4226177094 hasConcept C142724271 @default.
- W4226177094 hasConcept C150903083 @default.
- W4226177094 hasConcept C154945302 @default.
- W4226177094 hasConcept C182076605 @default.
- W4226177094 hasConcept C18903297 @default.
- W4226177094 hasConcept C202444582 @default.
- W4226177094 hasConcept C2779134260 @default.
- W4226177094 hasConcept C3019235130 @default.
- W4226177094 hasConcept C33923547 @default.
- W4226177094 hasConcept C41008148 @default.
- W4226177094 hasConcept C6557445 @default.
- W4226177094 hasConcept C71924100 @default.
- W4226177094 hasConcept C86803240 @default.
- W4226177094 hasConcept C88463610 @default.
- W4226177094 hasConcept C9652623 @default.
- W4226177094 hasConceptScore W4226177094C110875604 @default.
- W4226177094 hasConceptScore W4226177094C118518473 @default.
- W4226177094 hasConceptScore W4226177094C119857082 @default.
- W4226177094 hasConceptScore W4226177094C127413603 @default.
- W4226177094 hasConceptScore W4226177094C136764020 @default.
- W4226177094 hasConceptScore W4226177094C142724271 @default.
- W4226177094 hasConceptScore W4226177094C150903083 @default.
- W4226177094 hasConceptScore W4226177094C154945302 @default.
- W4226177094 hasConceptScore W4226177094C182076605 @default.
- W4226177094 hasConceptScore W4226177094C18903297 @default.
- W4226177094 hasConceptScore W4226177094C202444582 @default.
- W4226177094 hasConceptScore W4226177094C2779134260 @default.
- W4226177094 hasConceptScore W4226177094C3019235130 @default.
- W4226177094 hasConceptScore W4226177094C33923547 @default.
- W4226177094 hasConceptScore W4226177094C41008148 @default.
- W4226177094 hasConceptScore W4226177094C6557445 @default.
- W4226177094 hasConceptScore W4226177094C71924100 @default.
- W4226177094 hasConceptScore W4226177094C86803240 @default.
- W4226177094 hasConceptScore W4226177094C88463610 @default.
- W4226177094 hasConceptScore W4226177094C9652623 @default.
- W4226177094 hasLocation W42261770941 @default.
- W4226177094 hasOpenAccess W4226177094 @default.
- W4226177094 hasPrimaryLocation W42261770941 @default.
- W4226177094 hasRelatedWork W2961085424 @default.
- W4226177094 hasRelatedWork W3046775127 @default.
- W4226177094 hasRelatedWork W3186397928 @default.
- W4226177094 hasRelatedWork W4285260836 @default.