Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226178517> ?p ?o ?g. }
- W4226178517 endingPage "3400" @default.
- W4226178517 startingPage "3389" @default.
- W4226178517 abstract "Complete response after neoadjuvant chemotherapy (rNACT) elevates the surgical outcomes of patients with breast cancer, however, non-rNACT have a higher risk of death and recurrence.To establish novel machine learning (ML)-based predictive models for predicting probability of rNACT in breast cancer patients who intends to receive NACT.A retrospective analysis of 487 breast cancer patients who underwent mastectomy or breast-conserving surgery and axillary lymph node dissection following neoadjuvant chemotherapy at the Hubei Cancer Hospital between January 1, 2013, and October 1, 2021. The study cohort was divided into internal training and testing datasets in a 70:30 ratio for further analysis. A total of twenty-four variables were included to develop predictive models for rNACT by multiple ML-based algorithms. A feature selection approach was used to identify optimal predictive factors. These models were evaluated by the receiver operating characteristic (ROC) curve for predictive performance.Analysis identified several significant differences between the rNACT and non-rNACT groups, including total cholesterol, low-density lipoprotein, neutrophil-to-lymphocyte ratio, body mass index, platelet count, albumin-to-globulin ratio, platelet-to-lymphocyte ratio, and lymphocyte-to-monocyte ratio. The areas under the curve of the six models ranged from 0.81 to 0.96. Some ML-based models performed better than models using conventional statistical methods in both ROC curves. The support vector machine (SVM) model with twelve variables introduced was identified as the best predictive model.By incorporating pretreatment serum lipids and serum inflammation markers, it is feasible to develop ML-based models for the preoperative prediction of rNACT and therefore facilitate the choice of treatment, particularly the SVM, which can improve the prediction of rNACT in patients with breast cancer." @default.
- W4226178517 created "2022-05-05" @default.
- W4226178517 creator A5009985019 @default.
- W4226178517 creator A5017541508 @default.
- W4226178517 creator A5023557160 @default.
- W4226178517 creator A5033807561 @default.
- W4226178517 creator A5034190677 @default.
- W4226178517 creator A5074504754 @default.
- W4226178517 date "2022-04-16" @default.
- W4226178517 modified "2023-09-27" @default.
- W4226178517 title "Added value of systemic inflammation markers for monitoring response to neoadjuvant chemotherapy in breast cancer patients" @default.
- W4226178517 cites W1905685698 @default.
- W4226178517 cites W1992262141 @default.
- W4226178517 cites W2019607817 @default.
- W4226178517 cites W2060219325 @default.
- W4226178517 cites W2119361626 @default.
- W4226178517 cites W2121068794 @default.
- W4226178517 cites W2138021040 @default.
- W4226178517 cites W2164774797 @default.
- W4226178517 cites W2169103656 @default.
- W4226178517 cites W2177870565 @default.
- W4226178517 cites W2406668861 @default.
- W4226178517 cites W2618058430 @default.
- W4226178517 cites W2768068475 @default.
- W4226178517 cites W2770409748 @default.
- W4226178517 cites W2774580734 @default.
- W4226178517 cites W2785645041 @default.
- W4226178517 cites W2807730951 @default.
- W4226178517 cites W2884318797 @default.
- W4226178517 cites W2885069035 @default.
- W4226178517 cites W2896084151 @default.
- W4226178517 cites W2904264004 @default.
- W4226178517 cites W2913997948 @default.
- W4226178517 cites W2923418412 @default.
- W4226178517 cites W2937720651 @default.
- W4226178517 cites W2952761107 @default.
- W4226178517 cites W2973871066 @default.
- W4226178517 cites W2995098893 @default.
- W4226178517 cites W2997631071 @default.
- W4226178517 cites W3015679651 @default.
- W4226178517 cites W3023868126 @default.
- W4226178517 cites W3028499805 @default.
- W4226178517 cites W3046033465 @default.
- W4226178517 cites W3049204557 @default.
- W4226178517 cites W3094570415 @default.
- W4226178517 cites W3098832179 @default.
- W4226178517 cites W3101280147 @default.
- W4226178517 cites W3157193954 @default.
- W4226178517 cites W3157539278 @default.
- W4226178517 cites W3158216476 @default.
- W4226178517 cites W4214672256 @default.
- W4226178517 cites W4376848469 @default.
- W4226178517 doi "https://doi.org/10.12998/wjcc.v10.i11.3389" @default.
- W4226178517 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35611192" @default.
- W4226178517 hasPublicationYear "2022" @default.
- W4226178517 type Work @default.
- W4226178517 citedByCount "1" @default.
- W4226178517 countsByYear W42261785172023 @default.
- W4226178517 crossrefType "journal-article" @default.
- W4226178517 hasAuthorship W4226178517A5009985019 @default.
- W4226178517 hasAuthorship W4226178517A5017541508 @default.
- W4226178517 hasAuthorship W4226178517A5023557160 @default.
- W4226178517 hasAuthorship W4226178517A5033807561 @default.
- W4226178517 hasAuthorship W4226178517A5034190677 @default.
- W4226178517 hasAuthorship W4226178517A5074504754 @default.
- W4226178517 hasBestOaLocation W42261785171 @default.
- W4226178517 hasConcept C121608353 @default.
- W4226178517 hasConcept C126322002 @default.
- W4226178517 hasConcept C141071460 @default.
- W4226178517 hasConcept C143998085 @default.
- W4226178517 hasConcept C167135981 @default.
- W4226178517 hasConcept C2777757722 @default.
- W4226178517 hasConcept C2777761686 @default.
- W4226178517 hasConcept C2778292576 @default.
- W4226178517 hasConcept C2778963024 @default.
- W4226178517 hasConcept C530470458 @default.
- W4226178517 hasConcept C58471807 @default.
- W4226178517 hasConcept C71924100 @default.
- W4226178517 hasConceptScore W4226178517C121608353 @default.
- W4226178517 hasConceptScore W4226178517C126322002 @default.
- W4226178517 hasConceptScore W4226178517C141071460 @default.
- W4226178517 hasConceptScore W4226178517C143998085 @default.
- W4226178517 hasConceptScore W4226178517C167135981 @default.
- W4226178517 hasConceptScore W4226178517C2777757722 @default.
- W4226178517 hasConceptScore W4226178517C2777761686 @default.
- W4226178517 hasConceptScore W4226178517C2778292576 @default.
- W4226178517 hasConceptScore W4226178517C2778963024 @default.
- W4226178517 hasConceptScore W4226178517C530470458 @default.
- W4226178517 hasConceptScore W4226178517C58471807 @default.
- W4226178517 hasConceptScore W4226178517C71924100 @default.
- W4226178517 hasIssue "11" @default.
- W4226178517 hasLocation W42261785171 @default.
- W4226178517 hasLocation W42261785172 @default.
- W4226178517 hasLocation W42261785173 @default.
- W4226178517 hasOpenAccess W4226178517 @default.
- W4226178517 hasPrimaryLocation W42261785171 @default.
- W4226178517 hasRelatedWork W1539325367 @default.
- W4226178517 hasRelatedWork W2013223170 @default.