Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226179612> ?p ?o ?g. }
- W4226179612 endingPage "1201" @default.
- W4226179612 startingPage "1186" @default.
- W4226179612 abstract "In a cell-free network, a large number of mobile devices are served simultaneously by several base stations (BSs)/access points(APs) using the same time/frequency resources. However, this creates high signal processing demands (e.g., for beamforming) at the transmitters and receivers. In this work, we develop centralized and distributed deep reinforcement learning (DRL)-based methods to optimize beamforming at the uplink of a cell-free network. First, we propose a fully centralized uplink beamforming method (i.e., centralized learning) that uses the Deep Deterministic Policy Gradient algorithm (DDPG) for an offline-trained DRL model. We then enhance this method, in terms of convergence and performance, by using distributed experiences collected from different APs based on the Distributed Distributional Deterministic Policy Gradients algorithm (D4PG) in which the APs represent the distributed agents of the DRL model. To reduce the complexity of signal processing at the central processing unit (CPU), we propose a fully distributed DRL-based uplink beamforming scheme. This scheme divides the beamforming computations among distributed APs. The proposed schemes are then benchmarked against two common linear beamforming schemes, namely, minimum mean square estimation (MMSE) and the simplified conjugate symmetric schemes. The results show that the D4PG scheme with distributed experience achieves the best performance irrespective of the network size. Furthermore, although the proposed distributed beamforming technique reduces the complexity of centralized learning in the DDPG algorithm, it performs better than the DDPG algorithm only for small-scale networks. The performance superiority of the fully centralized DDPG model becomes more evident as the number of APs and/or UEs increases. The codes for all of our DRL implementations are available at <monospace xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink><uri>https://github.com/RayRedd/Distributed_beamforming_rl</uri></monospace> ." @default.
- W4226179612 created "2022-05-05" @default.
- W4226179612 creator A5035655974 @default.
- W4226179612 creator A5036918478 @default.
- W4226179612 creator A5043530847 @default.
- W4226179612 creator A5053371528 @default.
- W4226179612 creator A5089270885 @default.
- W4226179612 date "2022-06-01" @default.
- W4226179612 modified "2023-10-10" @default.
- W4226179612 title "Distributed Beamforming Techniques for Cell-Free Wireless Networks Using Deep Reinforcement Learning" @default.
- W4226179612 cites W1540562499 @default.
- W4226179612 cites W2018008632 @default.
- W4226179612 cites W2125884950 @default.
- W4226179612 cites W2145013959 @default.
- W4226179612 cites W2286275639 @default.
- W4226179612 cites W2537636391 @default.
- W4226179612 cites W2610350904 @default.
- W4226179612 cites W2802123921 @default.
- W4226179612 cites W2884911846 @default.
- W4226179612 cites W2885033069 @default.
- W4226179612 cites W2895984297 @default.
- W4226179612 cites W2907461669 @default.
- W4226179612 cites W2922989912 @default.
- W4226179612 cites W2929612105 @default.
- W4226179612 cites W2945086780 @default.
- W4226179612 cites W2957876937 @default.
- W4226179612 cites W2963035503 @default.
- W4226179612 cites W2964050245 @default.
- W4226179612 cites W2965123227 @default.
- W4226179612 cites W2966875025 @default.
- W4226179612 cites W2970732091 @default.
- W4226179612 cites W2971055251 @default.
- W4226179612 cites W2971415724 @default.
- W4226179612 cites W2974046131 @default.
- W4226179612 cites W2987021817 @default.
- W4226179612 cites W2991195371 @default.
- W4226179612 cites W2998514310 @default.
- W4226179612 cites W2998989360 @default.
- W4226179612 cites W3000950478 @default.
- W4226179612 cites W3010988727 @default.
- W4226179612 cites W3013648197 @default.
- W4226179612 cites W3015844993 @default.
- W4226179612 cites W3035056569 @default.
- W4226179612 cites W3080441795 @default.
- W4226179612 cites W3099019646 @default.
- W4226179612 cites W3102684176 @default.
- W4226179612 doi "https://doi.org/10.1109/tccn.2022.3165810" @default.
- W4226179612 hasPublicationYear "2022" @default.
- W4226179612 type Work @default.
- W4226179612 citedByCount "8" @default.
- W4226179612 countsByYear W42261796122022 @default.
- W4226179612 countsByYear W42261796122023 @default.
- W4226179612 crossrefType "journal-article" @default.
- W4226179612 hasAuthorship W4226179612A5035655974 @default.
- W4226179612 hasAuthorship W4226179612A5036918478 @default.
- W4226179612 hasAuthorship W4226179612A5043530847 @default.
- W4226179612 hasAuthorship W4226179612A5053371528 @default.
- W4226179612 hasAuthorship W4226179612A5089270885 @default.
- W4226179612 hasConcept C108037233 @default.
- W4226179612 hasConcept C11413529 @default.
- W4226179612 hasConcept C120314980 @default.
- W4226179612 hasConcept C130120984 @default.
- W4226179612 hasConcept C138660444 @default.
- W4226179612 hasConcept C154945302 @default.
- W4226179612 hasConcept C162324750 @default.
- W4226179612 hasConcept C179799912 @default.
- W4226179612 hasConcept C2777303404 @default.
- W4226179612 hasConcept C31258907 @default.
- W4226179612 hasConcept C41008148 @default.
- W4226179612 hasConcept C50522688 @default.
- W4226179612 hasConcept C54197355 @default.
- W4226179612 hasConcept C555944384 @default.
- W4226179612 hasConcept C68649174 @default.
- W4226179612 hasConcept C76155785 @default.
- W4226179612 hasConcept C81184566 @default.
- W4226179612 hasConcept C97541855 @default.
- W4226179612 hasConceptScore W4226179612C108037233 @default.
- W4226179612 hasConceptScore W4226179612C11413529 @default.
- W4226179612 hasConceptScore W4226179612C120314980 @default.
- W4226179612 hasConceptScore W4226179612C130120984 @default.
- W4226179612 hasConceptScore W4226179612C138660444 @default.
- W4226179612 hasConceptScore W4226179612C154945302 @default.
- W4226179612 hasConceptScore W4226179612C162324750 @default.
- W4226179612 hasConceptScore W4226179612C179799912 @default.
- W4226179612 hasConceptScore W4226179612C2777303404 @default.
- W4226179612 hasConceptScore W4226179612C31258907 @default.
- W4226179612 hasConceptScore W4226179612C41008148 @default.
- W4226179612 hasConceptScore W4226179612C50522688 @default.
- W4226179612 hasConceptScore W4226179612C54197355 @default.
- W4226179612 hasConceptScore W4226179612C555944384 @default.
- W4226179612 hasConceptScore W4226179612C68649174 @default.
- W4226179612 hasConceptScore W4226179612C76155785 @default.
- W4226179612 hasConceptScore W4226179612C81184566 @default.
- W4226179612 hasConceptScore W4226179612C97541855 @default.
- W4226179612 hasFunder F4320334593 @default.
- W4226179612 hasIssue "2" @default.
- W4226179612 hasLocation W42261796121 @default.
- W4226179612 hasOpenAccess W4226179612 @default.