Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226179972> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4226179972 endingPage "297" @default.
- W4226179972 startingPage "289" @default.
- W4226179972 abstract "Sequential recommendation systems aim to predict users’ next actions based on the preferences learned from their historical behaviors. There are still fundamental challenges for sequential recommender. First, with the popularization of online services, recommender needs to serve both the warm- and cold-start users. However, most existing models depending on user-item interactions lose merits due to the difficulty of learning sequential dependencies with limited interactions. Second, users’ behaviors in their historical sequences are often implicit and complex due to the objective variability of reality and the subjective randomness of users’ intentions. It is difficult to capture the dynamic transition patterns from these user-item interactions. In this work, we propose a graph-based interpolation enhanced sequential recommender with deformable convolutional network (GISDCN). For cold-start users, we re-construct item sequences into a graph to infer users’ possible preferences. To capture the complex sequential dependencies, we employ the deformable convolutional network to generate more robust and flexible filters. Finally, we conduct comprehensive experiments and verify the effectiveness of our model. The experimental results demonstrate that GISDCN outperforms most of the state-of-the-art models at cold-start conditions." @default.
- W4226179972 created "2022-05-05" @default.
- W4226179972 creator A5001323842 @default.
- W4226179972 creator A5020955957 @default.
- W4226179972 creator A5028395483 @default.
- W4226179972 creator A5077474570 @default.
- W4226179972 creator A5078436172 @default.
- W4226179972 creator A5083452232 @default.
- W4226179972 creator A5086427178 @default.
- W4226179972 date "2022-01-01" @default.
- W4226179972 modified "2023-10-16" @default.
- W4226179972 title "GISDCN: A Graph-Based Interpolation Sequential Recommender with Deformable Convolutional Network" @default.
- W4226179972 cites W2171279286 @default.
- W4226179972 cites W2583674722 @default.
- W4226179972 cites W2626454364 @default.
- W4226179972 cites W2783272285 @default.
- W4226179972 cites W2902040508 @default.
- W4226179972 cites W2911752602 @default.
- W4226179972 cites W2963522561 @default.
- W4226179972 cites W3094074516 @default.
- W4226179972 cites W3098400049 @default.
- W4226179972 cites W3100480425 @default.
- W4226179972 cites W3101707147 @default.
- W4226179972 cites W3154362076 @default.
- W4226179972 cites W3166827814 @default.
- W4226179972 cites W3178835722 @default.
- W4226179972 cites W3208636516 @default.
- W4226179972 doi "https://doi.org/10.1007/978-3-031-00126-0_21" @default.
- W4226179972 hasPublicationYear "2022" @default.
- W4226179972 type Work @default.
- W4226179972 citedByCount "10" @default.
- W4226179972 countsByYear W42261799722023 @default.
- W4226179972 crossrefType "book-chapter" @default.
- W4226179972 hasAuthorship W4226179972A5001323842 @default.
- W4226179972 hasAuthorship W4226179972A5020955957 @default.
- W4226179972 hasAuthorship W4226179972A5028395483 @default.
- W4226179972 hasAuthorship W4226179972A5077474570 @default.
- W4226179972 hasAuthorship W4226179972A5078436172 @default.
- W4226179972 hasAuthorship W4226179972A5083452232 @default.
- W4226179972 hasAuthorship W4226179972A5086427178 @default.
- W4226179972 hasConcept C105795698 @default.
- W4226179972 hasConcept C119857082 @default.
- W4226179972 hasConcept C125112378 @default.
- W4226179972 hasConcept C127413603 @default.
- W4226179972 hasConcept C132525143 @default.
- W4226179972 hasConcept C146978453 @default.
- W4226179972 hasConcept C154945302 @default.
- W4226179972 hasConcept C21569690 @default.
- W4226179972 hasConcept C2778956030 @default.
- W4226179972 hasConcept C33923547 @default.
- W4226179972 hasConcept C41008148 @default.
- W4226179972 hasConcept C557471498 @default.
- W4226179972 hasConcept C80444323 @default.
- W4226179972 hasConceptScore W4226179972C105795698 @default.
- W4226179972 hasConceptScore W4226179972C119857082 @default.
- W4226179972 hasConceptScore W4226179972C125112378 @default.
- W4226179972 hasConceptScore W4226179972C127413603 @default.
- W4226179972 hasConceptScore W4226179972C132525143 @default.
- W4226179972 hasConceptScore W4226179972C146978453 @default.
- W4226179972 hasConceptScore W4226179972C154945302 @default.
- W4226179972 hasConceptScore W4226179972C21569690 @default.
- W4226179972 hasConceptScore W4226179972C2778956030 @default.
- W4226179972 hasConceptScore W4226179972C33923547 @default.
- W4226179972 hasConceptScore W4226179972C41008148 @default.
- W4226179972 hasConceptScore W4226179972C557471498 @default.
- W4226179972 hasConceptScore W4226179972C80444323 @default.
- W4226179972 hasLocation W42261799721 @default.
- W4226179972 hasOpenAccess W4226179972 @default.
- W4226179972 hasPrimaryLocation W42261799721 @default.
- W4226179972 hasRelatedWork W2587199427 @default.
- W4226179972 hasRelatedWork W2889199783 @default.
- W4226179972 hasRelatedWork W2890923272 @default.
- W4226179972 hasRelatedWork W2909127866 @default.
- W4226179972 hasRelatedWork W2950359222 @default.
- W4226179972 hasRelatedWork W3169583016 @default.
- W4226179972 hasRelatedWork W3173572738 @default.
- W4226179972 hasRelatedWork W4287281996 @default.
- W4226179972 hasRelatedWork W4318433517 @default.
- W4226179972 hasRelatedWork W4377236332 @default.
- W4226179972 isParatext "false" @default.
- W4226179972 isRetracted "false" @default.
- W4226179972 workType "book-chapter" @default.