Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226183856> ?p ?o ?g. }
- W4226183856 endingPage "8205" @default.
- W4226183856 startingPage "8196" @default.
- W4226183856 abstract "Automatic power transmission line detection plays the key role in smart grid which has been widely applied into the path planning and navigation of intelligent inspection platforms, such as Unmanned Aerial Vehicles (UAVs), climbing robots, hybrid inspection robots, etc. Nevertheless, the power lines are always against complex background environment and different illumination conditions. And the power lines occupy a minimal portion image pixels in the aerial images compared with backgrounds which causes the foreground-background class imbalance issue. Therefore, robust and accurate vision-based power line detection still faces a certain challenge. Recently, deep learning has got fast development on pixel-level object segmentation due to strong contextual feature expression ability, especially U-shape network (U-Net) and its variants. However, it still exists a certain shortcomings owing to insufficient process of local contextual features to affect the segmentation precision. Meanwhile, multiple pooling operations in deep convolutional neural networks (DCNNs) also will cause the information loss. To address these issues, with the encoder-decoder architecture, a novel vision-based power line detection network is proposed in this paper to construct an end-to-end detection scheme of power lines from aerial images. To make the segmentation network capture the global contexts and emphasize target regions of power transmission lines, an attention block is proposed to be embedded into the proposed power line detection network to address the class imbalance issue. Meanwhile, faced with the insufficient process of local contextual feature maps of DCNNs, an attention fusion block is proposed for multi-scale feature fusion to acquire more rich information and improve the segmentation precision. Experiments on power lines show that the proposed power line detection network shows a good segmentation performance on real power line environment compared with other advanced detection methods." @default.
- W4226183856 created "2022-05-05" @default.
- W4226183856 creator A5024693956 @default.
- W4226183856 creator A5048032713 @default.
- W4226183856 creator A5060300868 @default.
- W4226183856 creator A5068248239 @default.
- W4226183856 creator A5070936827 @default.
- W4226183856 date "2022-04-15" @default.
- W4226183856 modified "2023-10-18" @default.
- W4226183856 title "Vision-Based Power Line Segmentation With an Attention Fusion Network" @default.
- W4226183856 cites W1903029394 @default.
- W4226183856 cites W1970513145 @default.
- W4226183856 cites W2625290171 @default.
- W4226183856 cites W2752782242 @default.
- W4226183856 cites W2775209736 @default.
- W4226183856 cites W2783876128 @default.
- W4226183856 cites W2786324549 @default.
- W4226183856 cites W2948202452 @default.
- W4226183856 cites W2971657673 @default.
- W4226183856 cites W2976685420 @default.
- W4226183856 cites W2977798290 @default.
- W4226183856 cites W2982681558 @default.
- W4226183856 cites W2985735046 @default.
- W4226183856 cites W2989086476 @default.
- W4226183856 cites W3024557584 @default.
- W4226183856 cites W3034978667 @default.
- W4226183856 cites W3046170906 @default.
- W4226183856 cites W3082127514 @default.
- W4226183856 cites W3098650625 @default.
- W4226183856 cites W3120920721 @default.
- W4226183856 cites W3135328933 @default.
- W4226183856 cites W3138118886 @default.
- W4226183856 cites W3155079234 @default.
- W4226183856 cites W3156655103 @default.
- W4226183856 cites W3161081823 @default.
- W4226183856 cites W3181013368 @default.
- W4226183856 cites W3183059737 @default.
- W4226183856 doi "https://doi.org/10.1109/jsen.2022.3157336" @default.
- W4226183856 hasPublicationYear "2022" @default.
- W4226183856 type Work @default.
- W4226183856 citedByCount "12" @default.
- W4226183856 countsByYear W42261838562022 @default.
- W4226183856 countsByYear W42261838562023 @default.
- W4226183856 crossrefType "journal-article" @default.
- W4226183856 hasAuthorship W4226183856A5024693956 @default.
- W4226183856 hasAuthorship W4226183856A5048032713 @default.
- W4226183856 hasAuthorship W4226183856A5060300868 @default.
- W4226183856 hasAuthorship W4226183856A5068248239 @default.
- W4226183856 hasAuthorship W4226183856A5070936827 @default.
- W4226183856 hasConcept C111919701 @default.
- W4226183856 hasConcept C118505674 @default.
- W4226183856 hasConcept C119599485 @default.
- W4226183856 hasConcept C127413603 @default.
- W4226183856 hasConcept C138885662 @default.
- W4226183856 hasConcept C140311924 @default.
- W4226183856 hasConcept C154945302 @default.
- W4226183856 hasConcept C2524010 @default.
- W4226183856 hasConcept C2776151529 @default.
- W4226183856 hasConcept C2776401178 @default.
- W4226183856 hasConcept C2777210771 @default.
- W4226183856 hasConcept C31972630 @default.
- W4226183856 hasConcept C33923547 @default.
- W4226183856 hasConcept C41008148 @default.
- W4226183856 hasConcept C41895202 @default.
- W4226183856 hasConcept C81363708 @default.
- W4226183856 hasConcept C89600930 @default.
- W4226183856 hasConcept C90509273 @default.
- W4226183856 hasConcept C98045186 @default.
- W4226183856 hasConceptScore W4226183856C111919701 @default.
- W4226183856 hasConceptScore W4226183856C118505674 @default.
- W4226183856 hasConceptScore W4226183856C119599485 @default.
- W4226183856 hasConceptScore W4226183856C127413603 @default.
- W4226183856 hasConceptScore W4226183856C138885662 @default.
- W4226183856 hasConceptScore W4226183856C140311924 @default.
- W4226183856 hasConceptScore W4226183856C154945302 @default.
- W4226183856 hasConceptScore W4226183856C2524010 @default.
- W4226183856 hasConceptScore W4226183856C2776151529 @default.
- W4226183856 hasConceptScore W4226183856C2776401178 @default.
- W4226183856 hasConceptScore W4226183856C2777210771 @default.
- W4226183856 hasConceptScore W4226183856C31972630 @default.
- W4226183856 hasConceptScore W4226183856C33923547 @default.
- W4226183856 hasConceptScore W4226183856C41008148 @default.
- W4226183856 hasConceptScore W4226183856C41895202 @default.
- W4226183856 hasConceptScore W4226183856C81363708 @default.
- W4226183856 hasConceptScore W4226183856C89600930 @default.
- W4226183856 hasConceptScore W4226183856C90509273 @default.
- W4226183856 hasConceptScore W4226183856C98045186 @default.
- W4226183856 hasFunder F4320321001 @default.
- W4226183856 hasFunder F4320335777 @default.
- W4226183856 hasIssue "8" @default.
- W4226183856 hasLocation W42261838561 @default.
- W4226183856 hasOpenAccess W4226183856 @default.
- W4226183856 hasPrimaryLocation W42261838561 @default.
- W4226183856 hasRelatedWork W1669643531 @default.
- W4226183856 hasRelatedWork W1982826852 @default.
- W4226183856 hasRelatedWork W2005437358 @default.
- W4226183856 hasRelatedWork W2008656436 @default.
- W4226183856 hasRelatedWork W2023558673 @default.