Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226184483> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4226184483 endingPage "1566" @default.
- W4226184483 startingPage "1558" @default.
- W4226184483 abstract "No AccessEngineering NotesContinuous Optimization-Based Drift Counteraction: A Spacecraft Attitude Control Case StudySunbochen Tang, Nan Li, Robert A. E. Zidek and Ilya KolmanovskySunbochen TangUniversity of Michigan, Ann Arbor, Michigan 48109*Graduate Student, Department of Aerospace Engineering.Search for more papers by this author, Nan LiUniversity of Michigan, Ann Arbor, Michigan 48109†Postdoc Research Fellow, Department of Aerospace Engineering.Search for more papers by this author, Robert A. E. ZidekUniversity of Michigan, Ann Arbor, Michigan 48109‡Researcher, Department of Aerospace Engineering.Search for more papers by this author and Ilya KolmanovskyUniversity of Michigan, Ann Arbor, Michigan 48109§Professor, Department of Aerospace Engineering.Search for more papers by this authorPublished Online:4 Apr 2022https://doi.org/10.2514/1.G006633SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Camacho E. F. and Alba C. B., Model Predictive Control, Springer Science & Business Media, Berlin, 2013, Chap. 7. https://doi.org/10.1007/978-0-85729-398-5 Google Scholar[2] Rawlings J. B., Mayne D. Q. and Diehl M., Model Predictive Control: Theory, Computation, and Design, Vol. 2, Nob Hill Publishing, Madison, WI, 2017, Chap. 2. Google Scholar[3] Garone E., Di Cairano S. and Kolmanovsky I., “Reference and Command Governors for Systems with Constraints: A Survey on Theory and Applications,” Automatica, Vol. 75, Jan. 2017, pp. 306–328. https://doi.org/10.1016/j.automatica.2016.08.013 CrossrefGoogle Scholar[4] Ames A. D., Xu X., Grizzle J. W. and Tabuada P., “Control Barrier Function Based Quadratic Programs for Safety Critical Systems,” IEEE Transactions on Automatic Control, Vol. 62, No. 8, 2016, pp. 3861–3876. https://doi.org/10.1109/TAC.2016.2638961 CrossrefGoogle Scholar[5] Zidek R. A. and Kolmanovsky I. V., “Drift Counteraction Optimal Control for Deterministic Systems and Enhancing Convergence of Value Iteration,” Automatica, Vol. 83, Sept. 2017, pp. 108–115. https://doi.org/10.1016/j.automatica.2017.06.015 CrossrefGoogle Scholar[6] Barles G. and Perthame B., “Exit Time Problems in Optimal Control and Vanishing Viscosity Method,” SIAM Journal on Control and Optimization, Vol. 26, No. 5, 1988, pp. 1133–1148. https://doi.org/10.1137/0326063 CrossrefGoogle Scholar[7] Blanc A.-P., “Deterministic Exit Time Control Problems with Discontinuous Exit Costs,” SIAM Journal on Control and Optimization, Vol. 35, No. 2, 1997, pp. 399–434. https://doi.org/10.1137/S0363012994267340 CrossrefGoogle Scholar[8] Zidek R. A., Kolmanovsky I. V. and Bemporad A., “Spacecraft Drift Counteraction Optimal Control: Open-Loop and Receding Horizon Solutions,” Journal of Guidance, Control, and Dynamics, Vol. 41, No. 9, 2018, pp. 1859–1872. https://doi.org/10.2514/1.G002978 LinkGoogle Scholar[9] Bertsekas D. P., Dynamic Programming and Optimal Control, Athena Scientific, Belmont, MA, 1995, Chap. 1. Google Scholar[10] Richards A. and How J., “Mixed-Integer Programming for Control,” American Control Conference, Inst. of Electrical and Electronics Engineers, New York, 2005, pp. 2676–2683. https://doi.org/10.1109/ACC.2005.1470372 Google Scholar[11] Verschueren R., Ferreau H. J., Zanarini A., Mercangöz M. and Diehl M., “A Stabilizing Nonlinear Model Predictive Control Scheme for Time-Optimal Point-to-Point Motions,” 56th Conference on Decision and Control, Inst. of Electrical and Electronics Engineers, New York, 2017, pp. 2525–2530. https://doi.org/10.1109/CDC.2017.8264024 Google Scholar[12] Tang S., Li N., Kolmanovsky I. and Zidek R., “A continuous Optimization Approach to Drift Counteraction Optimal Control,” American Control Conference, Inst. of Electrical and Electronics Engineers, New York, 2021, pp. 3824–3829. https://doi.org/10.23919/ACC50511.2021.9482647 Google Scholar[13] Cowen R., “The Wheels Come Off Kepler,” Nature News, Vol. 497, No. 7450, 2013, p. 417. https://doi.org/10.1038/497417a CrossrefGoogle Scholar[14] Crouch P., “Spacecraft Attitude Control and Stabilization: Applications of Geometric Control Theory to Rigid Body Models,” IEEE Transactions on Automatic Control, Vol. 29, No. 4, 1984, pp. 321–331. https://doi.org/10.1109/TAC.1984.1103519 CrossrefGoogle Scholar[15] Krishnan H., McClamroch N. H. and Reyhanoglu M., “Attitude Stabilization of a Rigid Spacecraft Using Two Momentum Wheel Actuators,” Journal of Guidance, Control, and Dynamics, Vol. 18, No. 2, 1995, pp. 256–263. https://doi.org/10.2514/3.21378 LinkGoogle Scholar[16] Horri N. and Hodgart S., “Attitude Stabilization of an Underactuated Satellite Using Two Wheels,” IEEE Aerospace Conference, Inst. of Electrical and Electronics Engineers, New York, 2003, pp. 2629–2635. https://doi.org/10.1109/AERO.2003.1235188 Google Scholar[17] Boyer F. and Alamir M., “Further Results on the Controllability of a Two-Wheeled Satellite,” Journal of Guidance, Control, and Dynamics, Vol. 30, No. 2, 2007, pp. 611–619. https://doi.org/10.2514/1.21505 LinkGoogle Scholar[18] Petersen C. D., Leve F., Flynn M. and Kolmanovsky I., “Recovering Linear Controllability of an Underactuated Spacecraft by Exploiting Solar Radiation Pressure,” Journal of Guidance, Control, and Dynamics, Vol. 39, No. 4, 2016, pp. 826–837. https://doi.org/10.2514/1.G001446 LinkGoogle Scholar[19] Büskens C. and Maurer H., Sensitivity Analysis and Real-Time Optimization of Parametric Nonlinear Programming Problems, Springer, Berlin, 2001, pp. 3–16. https://doi.org/10.1007/978-3-662-04331-8_1 Google Scholar[20] Lee T., Leok M. and McClamroch N. H., “Lie Group Variational Integrators for the Full Body Problem,” Computer Methods in Applied Mechanics and Engineering, Vol. 196, Nos. 29–30, 2007, pp. 2907–2924. https://doi.org/10.1016/j.cma.2007.01.017 CrossrefGoogle Scholar Previous article FiguresReferencesRelatedDetails What's Popular Volume 45, Number 8August 2022 CrossmarkInformationCopyright © 2022 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-3884 to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAerospace SciencesApplied MathematicsAstrodynamicsAstronauticsAttitude ControlClassical MechanicsGeneral PhysicsGeometry FunctionsMathematical AnalysisMathematical OptimizationNewton's Laws of MotionSpacecraft Attitude Control KeywordsSpacecraft AttitudeNonlinear ProgrammingEuler AnglesHamilton Jacobi Bellman (HJB) EquationsModel Predictive ControlNumerical IntegrationAttitude ControlNumerical SimulationSequential Quadratic ProgrammingSolar RadiationAcknowledgmentsThis research was supported by the National Science Foundation award ECCS 1931738 and the Air Force Office of Scientific Research grant FA9550-20-1-038.PDF Received18 December 2021Accepted22 February 2022Published online4 April 2022" @default.
- W4226184483 created "2022-05-05" @default.
- W4226184483 creator A5015105154 @default.
- W4226184483 creator A5065428032 @default.
- W4226184483 creator A5078022728 @default.
- W4226184483 creator A5088411868 @default.
- W4226184483 date "2022-08-01" @default.
- W4226184483 modified "2023-10-16" @default.
- W4226184483 title "Continuous Optimization-Based Drift Counteraction: A Spacecraft Attitude Control Case Study" @default.
- W4226184483 cites W1992415540 @default.
- W4226184483 cites W2022883157 @default.
- W4226184483 cites W2077258881 @default.
- W4226184483 cites W2077883650 @default.
- W4226184483 cites W2082419969 @default.
- W4226184483 cites W2093798416 @default.
- W4226184483 cites W2112862244 @default.
- W4226184483 cites W2164259133 @default.
- W4226184483 cites W2217976303 @default.
- W4226184483 cites W2513988836 @default.
- W4226184483 cites W2733475290 @default.
- W4226184483 cites W2886170143 @default.
- W4226184483 cites W3098925401 @default.
- W4226184483 doi "https://doi.org/10.2514/1.g006633" @default.
- W4226184483 hasPublicationYear "2022" @default.
- W4226184483 type Work @default.
- W4226184483 citedByCount "0" @default.
- W4226184483 crossrefType "journal-article" @default.
- W4226184483 hasAuthorship W4226184483A5015105154 @default.
- W4226184483 hasAuthorship W4226184483A5065428032 @default.
- W4226184483 hasAuthorship W4226184483A5078022728 @default.
- W4226184483 hasAuthorship W4226184483A5088411868 @default.
- W4226184483 hasConcept C127413603 @default.
- W4226184483 hasConcept C146978453 @default.
- W4226184483 hasConcept C161191863 @default.
- W4226184483 hasConcept C167740415 @default.
- W4226184483 hasConcept C2777089865 @default.
- W4226184483 hasConcept C29829512 @default.
- W4226184483 hasConcept C41008148 @default.
- W4226184483 hasConcept C42475967 @default.
- W4226184483 hasConcept C52119013 @default.
- W4226184483 hasConcept C95457728 @default.
- W4226184483 hasConceptScore W4226184483C127413603 @default.
- W4226184483 hasConceptScore W4226184483C146978453 @default.
- W4226184483 hasConceptScore W4226184483C161191863 @default.
- W4226184483 hasConceptScore W4226184483C167740415 @default.
- W4226184483 hasConceptScore W4226184483C2777089865 @default.
- W4226184483 hasConceptScore W4226184483C29829512 @default.
- W4226184483 hasConceptScore W4226184483C41008148 @default.
- W4226184483 hasConceptScore W4226184483C42475967 @default.
- W4226184483 hasConceptScore W4226184483C52119013 @default.
- W4226184483 hasConceptScore W4226184483C95457728 @default.
- W4226184483 hasFunder F4320306076 @default.
- W4226184483 hasFunder F4320338279 @default.
- W4226184483 hasIssue "8" @default.
- W4226184483 hasLocation W42261844831 @default.
- W4226184483 hasOpenAccess W4226184483 @default.
- W4226184483 hasPrimaryLocation W42261844831 @default.
- W4226184483 hasRelatedWork W1983781589 @default.
- W4226184483 hasRelatedWork W2012585669 @default.
- W4226184483 hasRelatedWork W2072265420 @default.
- W4226184483 hasRelatedWork W2075834149 @default.
- W4226184483 hasRelatedWork W2896297017 @default.
- W4226184483 hasRelatedWork W2899084033 @default.
- W4226184483 hasRelatedWork W3082288699 @default.
- W4226184483 hasRelatedWork W3117710167 @default.
- W4226184483 hasRelatedWork W4229903548 @default.
- W4226184483 hasRelatedWork W657050636 @default.
- W4226184483 hasVolume "45" @default.
- W4226184483 isParatext "false" @default.
- W4226184483 isRetracted "false" @default.
- W4226184483 workType "article" @default.