Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226189819> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4226189819 endingPage "43561" @default.
- W4226189819 startingPage "43552" @default.
- W4226189819 abstract "Road is one of important traffic lifelines that could be damaged after disaster by landslide rubble, buildings debris, and collapsed branches of trees. Therefore, road damage detection and assessment using post-Disaster High-Resolution Remote Sensing Images is extremely important for finding optimal paths and conducting rescue missions. In an emergency context, the existing methods based on change detection for road damage detection are difficult to achieve due to the mismatch of different data sources, especially for rural areas where the pre-disaster remote sensing imagery are hard to obtain. In this paper, a novel method based on the Tracking, Learning, and Detector (TLD) framework for detecting the damaged road region from post-disaster high-resolution remote sensing image is presented. First, a spoke wheel operator is employed to define the initial template of road. Then, the TLD framework is used to identify the suspected road damaged areas. Finally, the damaged road areas are extracted by pruning the false damaged roads. The proposed method was evaluated using post-disaster high-resolution remote sensing images collected over Beichuan, China in 2008 and Lushan, China in 2013. The results show that the proposed method is feasible and effective for road damage detection and assessment. Our main conclusion is that such an approach qualifies for practical use." @default.
- W4226189819 created "2022-05-05" @default.
- W4226189819 creator A5053734709 @default.
- W4226189819 creator A5064663421 @default.
- W4226189819 creator A5077322975 @default.
- W4226189819 creator A5079275720 @default.
- W4226189819 creator A5082684401 @default.
- W4226189819 date "2022-01-01" @default.
- W4226189819 modified "2023-09-30" @default.
- W4226189819 title "Road Damage Detection From Post-Disaster High-Resolution Remote Sensing Images Based on TLD Framework" @default.
- W4226189819 cites W1503479455 @default.
- W4226189819 cites W1906770428 @default.
- W4226189819 cites W2021305908 @default.
- W4226189819 cites W2035354357 @default.
- W4226189819 cites W2035933765 @default.
- W4226189819 cites W2044465660 @default.
- W4226189819 cites W2063587308 @default.
- W4226189819 cites W2086833143 @default.
- W4226189819 cites W2098596049 @default.
- W4226189819 cites W2102048636 @default.
- W4226189819 cites W2124211486 @default.
- W4226189819 cites W2141356859 @default.
- W4226189819 cites W2161969291 @default.
- W4226189819 cites W2286964412 @default.
- W4226189819 cites W2321010120 @default.
- W4226189819 cites W2347115704 @default.
- W4226189819 cites W2594738524 @default.
- W4226189819 cites W2608688176 @default.
- W4226189819 cites W2891915458 @default.
- W4226189819 cites W2990797644 @default.
- W4226189819 cites W3101012758 @default.
- W4226189819 cites W3197425962 @default.
- W4226189819 cites W4210404147 @default.
- W4226189819 cites W73112891 @default.
- W4226189819 doi "https://doi.org/10.1109/access.2022.3169031" @default.
- W4226189819 hasPublicationYear "2022" @default.
- W4226189819 type Work @default.
- W4226189819 citedByCount "5" @default.
- W4226189819 countsByYear W42261898192022 @default.
- W4226189819 countsByYear W42261898192023 @default.
- W4226189819 crossrefType "journal-article" @default.
- W4226189819 hasAuthorship W4226189819A5053734709 @default.
- W4226189819 hasAuthorship W4226189819A5064663421 @default.
- W4226189819 hasAuthorship W4226189819A5077322975 @default.
- W4226189819 hasAuthorship W4226189819A5079275720 @default.
- W4226189819 hasAuthorship W4226189819A5082684401 @default.
- W4226189819 hasBestOaLocation W42261898191 @default.
- W4226189819 hasConcept C127313418 @default.
- W4226189819 hasConcept C153294291 @default.
- W4226189819 hasConcept C166957645 @default.
- W4226189819 hasConcept C186295008 @default.
- W4226189819 hasConcept C187320778 @default.
- W4226189819 hasConcept C205649164 @default.
- W4226189819 hasConcept C2779343474 @default.
- W4226189819 hasConcept C2779481623 @default.
- W4226189819 hasConcept C3020199158 @default.
- W4226189819 hasConcept C39432304 @default.
- W4226189819 hasConcept C41008148 @default.
- W4226189819 hasConcept C62649853 @default.
- W4226189819 hasConceptScore W4226189819C127313418 @default.
- W4226189819 hasConceptScore W4226189819C153294291 @default.
- W4226189819 hasConceptScore W4226189819C166957645 @default.
- W4226189819 hasConceptScore W4226189819C186295008 @default.
- W4226189819 hasConceptScore W4226189819C187320778 @default.
- W4226189819 hasConceptScore W4226189819C205649164 @default.
- W4226189819 hasConceptScore W4226189819C2779343474 @default.
- W4226189819 hasConceptScore W4226189819C2779481623 @default.
- W4226189819 hasConceptScore W4226189819C3020199158 @default.
- W4226189819 hasConceptScore W4226189819C39432304 @default.
- W4226189819 hasConceptScore W4226189819C41008148 @default.
- W4226189819 hasConceptScore W4226189819C62649853 @default.
- W4226189819 hasLocation W42261898191 @default.
- W4226189819 hasLocation W42261898192 @default.
- W4226189819 hasOpenAccess W4226189819 @default.
- W4226189819 hasPrimaryLocation W42261898191 @default.
- W4226189819 hasRelatedWork W2068355098 @default.
- W4226189819 hasRelatedWork W2353486222 @default.
- W4226189819 hasRelatedWork W2380389558 @default.
- W4226189819 hasRelatedWork W2383500675 @default.
- W4226189819 hasRelatedWork W2790230321 @default.
- W4226189819 hasRelatedWork W2899084033 @default.
- W4226189819 hasRelatedWork W3047238252 @default.
- W4226189819 hasRelatedWork W4231530455 @default.
- W4226189819 hasRelatedWork W4311399290 @default.
- W4226189819 hasRelatedWork W4375851321 @default.
- W4226189819 hasVolume "10" @default.
- W4226189819 isParatext "false" @default.
- W4226189819 isRetracted "false" @default.
- W4226189819 workType "article" @default.