Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226192018> ?p ?o ?g. }
- W4226192018 endingPage "1547" @default.
- W4226192018 startingPage "1531" @default.
- W4226192018 abstract "Abstract. The surface energy balance is a key factor influencing the ground thermal regime. With ongoing climate change, it is crucial to understand the interactions of the individual heat fluxes at the surface and within the subsurface layers, as well as their relative impacts on the permafrost thermal regime. A unique set of high-altitude meteorological measurements was analysed to determine the energy balance at three mountain permafrost sites in the Swiss Alps (Murtèl–Corvatsch, Schilthorn and Stockhorn), where data have been collected since the late 1990s in the framework of the Swiss Permafrost Monitoring Network (PERMOS). All stations are equipped with sensors for four-component radiation, air temperature, humidity, and wind speed and direction, as well as ground temperatures and snow height. The three sites differ considerably in their surface and ground material composition, as well as their ground ice contents. The energy fluxes were calculated based on two decades of field measurements. While the determination of the radiation budget and the ground heat flux is comparatively straightforward (by the four-component radiation sensor and thermistor measurements within the boreholes), larger uncertainties exist for the determination of turbulent sensible and latent heat fluxes. Our results show that mean air temperature at Murtèl–Corvatsch (1997–2018, 2600 m a.s.l.) is −1.66 ∘C and has increased by about 0.8 ∘C during the measurement period. At the Schilthorn site (1999–2018, 2900 m a.s.l.) a mean air temperature of −2.60 ∘C with a mean increase of 1.0 ∘C was measured. The Stockhorn site (2003–2018, 3400 m a.s.l.) recorded lower air temperatures with a mean of −6.18 ∘C and an increase of 0.5 ∘C. Measured net radiation, as the most important energy input at the surface, shows substantial differences with mean values of 30.59 W m−2 for Murtèl–Corvatsch, 32.40 W m−2 for Schilthorn and 6.91 W m−2 for Stockhorn. The calculated turbulent fluxes show values of around 7 to 13 W m−2 using the Bowen ratio method and 3 to 15 W m−2 using the bulk method at all sites. Large differences are observed regarding the energy used for the melting of the snow cover: at Schilthorn a value of 8.46 W m−2, at Murtèl–Corvatsch 4.17 W m−2 and at Stockhorn 2.26 W m−2 are calculated, reflecting the differences in snow height at the three sites. In general, we found considerable differences in the energy fluxes at the different sites. These differences help to explain and interpret the causes of a warming atmosphere. We recognise a strong relation between the net radiation and the ground heat flux. Our results further demonstrate the importance of long-term monitoring to better understand the impacts of changes in the surface energy balance components on the permafrost thermal regime. The dataset presented can be used to improve permafrost modelling studies aiming at, for example, advancing knowledge about permafrost thaw processes. The data presented and described here are available for download at the following site: https://doi.org/10.13093/permos-meteo-2021-01 (Hoelzle et al., 2021)." @default.
- W4226192018 created "2022-05-05" @default.
- W4226192018 creator A5013951122 @default.
- W4226192018 creator A5025491088 @default.
- W4226192018 creator A5026466372 @default.
- W4226192018 creator A5041548591 @default.
- W4226192018 creator A5054536409 @default.
- W4226192018 creator A5072236934 @default.
- W4226192018 date "2022-04-07" @default.
- W4226192018 modified "2023-09-23" @default.
- W4226192018 title "Long-term energy balance measurements at three different mountain permafrost sites in the Swiss Alps" @default.
- W4226192018 cites W151868745 @default.
- W4226192018 cites W1556099805 @default.
- W4226192018 cites W1614922036 @default.
- W4226192018 cites W1912295873 @default.
- W4226192018 cites W1964226953 @default.
- W4226192018 cites W1982518595 @default.
- W4226192018 cites W1987237415 @default.
- W4226192018 cites W1991337411 @default.
- W4226192018 cites W1997764658 @default.
- W4226192018 cites W2008213013 @default.
- W4226192018 cites W2021436787 @default.
- W4226192018 cites W2025162523 @default.
- W4226192018 cites W2029119546 @default.
- W4226192018 cites W2031910452 @default.
- W4226192018 cites W2033345893 @default.
- W4226192018 cites W2041172293 @default.
- W4226192018 cites W2047195647 @default.
- W4226192018 cites W2063856890 @default.
- W4226192018 cites W2078783038 @default.
- W4226192018 cites W2080957646 @default.
- W4226192018 cites W2089235354 @default.
- W4226192018 cites W2091933606 @default.
- W4226192018 cites W2092762917 @default.
- W4226192018 cites W2098377703 @default.
- W4226192018 cites W2105518663 @default.
- W4226192018 cites W2111930708 @default.
- W4226192018 cites W2119632729 @default.
- W4226192018 cites W2120861689 @default.
- W4226192018 cites W2127381471 @default.
- W4226192018 cites W2139723657 @default.
- W4226192018 cites W2143171701 @default.
- W4226192018 cites W2145407597 @default.
- W4226192018 cites W2146257778 @default.
- W4226192018 cites W2157253982 @default.
- W4226192018 cites W2171024597 @default.
- W4226192018 cites W2173934470 @default.
- W4226192018 cites W2235697607 @default.
- W4226192018 cites W2258175382 @default.
- W4226192018 cites W2432405417 @default.
- W4226192018 cites W2487344204 @default.
- W4226192018 cites W2519002497 @default.
- W4226192018 cites W2530050905 @default.
- W4226192018 cites W2556415930 @default.
- W4226192018 cites W2791395019 @default.
- W4226192018 cites W2885644083 @default.
- W4226192018 cites W2908898337 @default.
- W4226192018 cites W2912622762 @default.
- W4226192018 cites W3010121969 @default.
- W4226192018 cites W3048712581 @default.
- W4226192018 cites W3049431674 @default.
- W4226192018 cites W3083340410 @default.
- W4226192018 cites W3160487655 @default.
- W4226192018 cites W4205155740 @default.
- W4226192018 cites W4205325549 @default.
- W4226192018 cites W4236451626 @default.
- W4226192018 cites W4250783589 @default.
- W4226192018 cites W4299847412 @default.
- W4226192018 doi "https://doi.org/10.5194/essd-14-1531-2022" @default.
- W4226192018 hasPublicationYear "2022" @default.
- W4226192018 type Work @default.
- W4226192018 citedByCount "3" @default.
- W4226192018 countsByYear W42261920182022 @default.
- W4226192018 countsByYear W42261920182023 @default.
- W4226192018 crossrefType "journal-article" @default.
- W4226192018 hasAuthorship W4226192018A5013951122 @default.
- W4226192018 hasAuthorship W4226192018A5025491088 @default.
- W4226192018 hasAuthorship W4226192018A5026466372 @default.
- W4226192018 hasAuthorship W4226192018A5041548591 @default.
- W4226192018 hasAuthorship W4226192018A5054536409 @default.
- W4226192018 hasAuthorship W4226192018A5072236934 @default.
- W4226192018 hasBestOaLocation W42261920181 @default.
- W4226192018 hasConcept C111368507 @default.
- W4226192018 hasConcept C114793014 @default.
- W4226192018 hasConcept C121332964 @default.
- W4226192018 hasConcept C127313418 @default.
- W4226192018 hasConcept C150560799 @default.
- W4226192018 hasConcept C15098985 @default.
- W4226192018 hasConcept C153294291 @default.
- W4226192018 hasConcept C153385146 @default.
- W4226192018 hasConcept C158960510 @default.
- W4226192018 hasConcept C159188206 @default.
- W4226192018 hasConcept C161067210 @default.
- W4226192018 hasConcept C187320778 @default.
- W4226192018 hasConcept C18903297 @default.
- W4226192018 hasConcept C197046000 @default.
- W4226192018 hasConcept C205649164 @default.
- W4226192018 hasConcept C2777423268 @default.