Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226192585> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W4226192585 endingPage "1638" @default.
- W4226192585 startingPage "1630" @default.
- W4226192585 abstract "BackgroundThe endoscopic diagnosis of Helicobacter-pylori(H.pylori) infection and gastric precancerous lesions(GPL), namely atrophic-gastritis and intestinal-metaplasia, still remains challenging. Artificial intelligence(AI) may represent a powerful resource for the endoscopic recognition of these conditions.AimsTo explore the diagnostic performance(DP) of AI in the diagnosis of GPL and H.pylori infection.MethodsA systematic-review was performed by two independent authors up to September 2021. Inclusion criteria were studies focusing on the DP of AI-system in the diagnosis of GPL and H.pylori infection. The pooled accuracy of studies included was reported.ResultsOverall, 128 studies were found (PubMed-Embase-Cochrane Library) and four and nine studies were finally included regarding GPL and H.pylori infection, respectively. The pooled-accuracy(random effects model) was 90.3%(95%CI 84.3–94.9) and 79.6%(95%CI 66.7–90.0) with a significant heterogeneity[I2=90.4%(95%CI 78.5–95.7);I2=97.9%(97.2–98.6)] for GPL and H.pylori infection, respectively. The Begg's-test showed a significant publication-bias(p = 0.0371) only among studies regarding H.pylori infection. The pooled-accuracy(random-effects-model) was similar considering only studies using CNN-model for the diagnosis of H.pylori infection: 74.1%[(95%CI 51.6–91.3);I2=98.9%(95%CI 98.5–99.3)], Begg's-test(p = 0.1416) did not show publication-bias.ConclusionAI-system seems to be a good resource for an easier diagnosis of GPL and H.pylori infection, showing a pooled-diagnostic-accuracy of 90% and 80%, respectively. However, considering the high heterogeneity, these promising data need an external validation by randomized control trials and prospective real-time studies." @default.
- W4226192585 created "2022-05-05" @default.
- W4226192585 creator A5006663295 @default.
- W4226192585 creator A5035332783 @default.
- W4226192585 creator A5040997127 @default.
- W4226192585 creator A5064773435 @default.
- W4226192585 date "2022-12-01" @default.
- W4226192585 modified "2023-10-18" @default.
- W4226192585 title "Systematic review and meta-analysis: Artificial intelligence for the diagnosis of gastric precancerous lesions and Helicobacter pylori infection" @default.
- W4226192585 cites W1984531043 @default.
- W4226192585 cites W1997715283 @default.
- W4226192585 cites W2044124936 @default.
- W4226192585 cites W2069378448 @default.
- W4226192585 cites W2098416719 @default.
- W4226192585 cites W2156290208 @default.
- W4226192585 cites W2164710273 @default.
- W4226192585 cites W2300642250 @default.
- W4226192585 cites W2416812111 @default.
- W4226192585 cites W2765527079 @default.
- W4226192585 cites W2785825652 @default.
- W4226192585 cites W2889646458 @default.
- W4226192585 cites W2891435050 @default.
- W4226192585 cites W2921353582 @default.
- W4226192585 cites W2922479519 @default.
- W4226192585 cites W2966426614 @default.
- W4226192585 cites W2967784235 @default.
- W4226192585 cites W2997235526 @default.
- W4226192585 cites W2999377002 @default.
- W4226192585 cites W3005985118 @default.
- W4226192585 cites W3006005668 @default.
- W4226192585 cites W3022742353 @default.
- W4226192585 cites W3042498934 @default.
- W4226192585 cites W3087638159 @default.
- W4226192585 cites W3088187081 @default.
- W4226192585 cites W3092280441 @default.
- W4226192585 cites W3104766291 @default.
- W4226192585 cites W3109516976 @default.
- W4226192585 cites W3139481901 @default.
- W4226192585 cites W3186103264 @default.
- W4226192585 cites W3196652390 @default.
- W4226192585 cites W4294215472 @default.
- W4226192585 doi "https://doi.org/10.1016/j.dld.2022.03.007" @default.
- W4226192585 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35382973" @default.
- W4226192585 hasPublicationYear "2022" @default.
- W4226192585 type Work @default.
- W4226192585 citedByCount "9" @default.
- W4226192585 countsByYear W42261925852022 @default.
- W4226192585 countsByYear W42261925852023 @default.
- W4226192585 crossrefType "journal-article" @default.
- W4226192585 hasAuthorship W4226192585A5006663295 @default.
- W4226192585 hasAuthorship W4226192585A5035332783 @default.
- W4226192585 hasAuthorship W4226192585A5040997127 @default.
- W4226192585 hasAuthorship W4226192585A5064773435 @default.
- W4226192585 hasConcept C126322002 @default.
- W4226192585 hasConcept C2776409635 @default.
- W4226192585 hasConcept C2776478404 @default.
- W4226192585 hasConcept C2776497702 @default.
- W4226192585 hasConcept C2780439572 @default.
- W4226192585 hasConcept C2908868296 @default.
- W4226192585 hasConcept C71924100 @default.
- W4226192585 hasConcept C90924648 @default.
- W4226192585 hasConcept C95190672 @default.
- W4226192585 hasConceptScore W4226192585C126322002 @default.
- W4226192585 hasConceptScore W4226192585C2776409635 @default.
- W4226192585 hasConceptScore W4226192585C2776478404 @default.
- W4226192585 hasConceptScore W4226192585C2776497702 @default.
- W4226192585 hasConceptScore W4226192585C2780439572 @default.
- W4226192585 hasConceptScore W4226192585C2908868296 @default.
- W4226192585 hasConceptScore W4226192585C71924100 @default.
- W4226192585 hasConceptScore W4226192585C90924648 @default.
- W4226192585 hasConceptScore W4226192585C95190672 @default.
- W4226192585 hasFunder F4320322510 @default.
- W4226192585 hasIssue "12" @default.
- W4226192585 hasLocation W42261925851 @default.
- W4226192585 hasLocation W42261925852 @default.
- W4226192585 hasOpenAccess W4226192585 @default.
- W4226192585 hasPrimaryLocation W42261925851 @default.
- W4226192585 hasRelatedWork W2036570812 @default.
- W4226192585 hasRelatedWork W2070315825 @default.
- W4226192585 hasRelatedWork W2395510883 @default.
- W4226192585 hasRelatedWork W2412602465 @default.
- W4226192585 hasRelatedWork W2517655610 @default.
- W4226192585 hasRelatedWork W2768640776 @default.
- W4226192585 hasRelatedWork W2995445983 @default.
- W4226192585 hasRelatedWork W3089026820 @default.
- W4226192585 hasRelatedWork W3097471099 @default.
- W4226192585 hasRelatedWork W3152463196 @default.
- W4226192585 hasVolume "54" @default.
- W4226192585 isParatext "false" @default.
- W4226192585 isRetracted "false" @default.
- W4226192585 workType "article" @default.