Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226193485> ?p ?o ?g. }
- W4226193485 endingPage "15" @default.
- W4226193485 startingPage "1" @default.
- W4226193485 abstract "In this article, we propose a novel graph convolutional network (GCN) for pansharpening, defined as GCPNet, which consists of three main modules: the spatial GCN module (SGCN), the spectral band GCN module (BGCN), and the atrous spatial pyramid module (ASPM). Specifically, due to the nature of GCN, the proposed SGCN and BGCN are capable of exploring the long-range relationship between the object and the global state in the spatial and spectral aspects, which benefits pansharpened results and has not been fully investigated before. In addition, the designed ASPM is equipped with multiscale atrous convolutions and learns richer local feature information, so as to cover the objects of different sizes in satellite images. To further enhance the representation of our proposed GCPNet, asynchronous knowledge distillation is introduced to provide compact features by heterogeneous task imitation in a teacher–student paradigm. In the paradigm, the teacher network acts as a variational autoencoder to extract compact features of the ground-truth MS images. The student network, devised for pansharpening, is trained with the assistance of the teacher network to transfer the important information of the expected ground-truth MS images. Extensive experimental results on different satellite datasets demonstrate that our proposed network outperforms the state-of-the-art methods both visually and quantitatively. The source code is released at <uri xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>https://github.com/Keyu-Yan/GCPNet</uri> ." @default.
- W4226193485 created "2022-05-05" @default.
- W4226193485 creator A5013112875 @default.
- W4226193485 creator A5062166339 @default.
- W4226193485 creator A5073289935 @default.
- W4226193485 creator A5074354427 @default.
- W4226193485 creator A5079590055 @default.
- W4226193485 date "2022-01-01" @default.
- W4226193485 modified "2023-10-06" @default.
- W4226193485 title "When Pansharpening Meets Graph Convolution Network and Knowledge Distillation" @default.
- W4226193485 cites W1885185971 @default.
- W4226193485 cites W1969455833 @default.
- W4226193485 cites W1992054832 @default.
- W4226193485 cites W1996371682 @default.
- W4226193485 cites W2000323021 @default.
- W4226193485 cites W2094280510 @default.
- W4226193485 cites W2106002835 @default.
- W4226193485 cites W2111924917 @default.
- W4226193485 cites W2114161542 @default.
- W4226193485 cites W2116341502 @default.
- W4226193485 cites W2144436897 @default.
- W4226193485 cites W2171211028 @default.
- W4226193485 cites W2194775991 @default.
- W4226193485 cites W2412782625 @default.
- W4226193485 cites W2414425402 @default.
- W4226193485 cites W2462592242 @default.
- W4226193485 cites W2463402750 @default.
- W4226193485 cites W2514340250 @default.
- W4226193485 cites W2560023338 @default.
- W4226193485 cites W2776622059 @default.
- W4226193485 cites W2777033955 @default.
- W4226193485 cites W2809440904 @default.
- W4226193485 cites W2891367133 @default.
- W4226193485 cites W2892621946 @default.
- W4226193485 cites W2922257341 @default.
- W4226193485 cites W2939570633 @default.
- W4226193485 cites W2963091558 @default.
- W4226193485 cites W2963183385 @default.
- W4226193485 cites W2963319519 @default.
- W4226193485 cites W2964808389 @default.
- W4226193485 cites W2970279440 @default.
- W4226193485 cites W2988509927 @default.
- W4226193485 cites W2991494819 @default.
- W4226193485 cites W3019893222 @default.
- W4226193485 cites W3034659433 @default.
- W4226193485 cites W3035526186 @default.
- W4226193485 cites W3047443805 @default.
- W4226193485 cites W3048631361 @default.
- W4226193485 cites W3080181119 @default.
- W4226193485 cites W3081397212 @default.
- W4226193485 cites W3098612954 @default.
- W4226193485 cites W3099258777 @default.
- W4226193485 cites W3103294617 @default.
- W4226193485 cites W3107490592 @default.
- W4226193485 cites W3107716502 @default.
- W4226193485 cites W3121069695 @default.
- W4226193485 cites W3135445258 @default.
- W4226193485 cites W3172472472 @default.
- W4226193485 cites W3175432749 @default.
- W4226193485 cites W3186756805 @default.
- W4226193485 cites W3204937691 @default.
- W4226193485 cites W3205562676 @default.
- W4226193485 cites W4206377169 @default.
- W4226193485 doi "https://doi.org/10.1109/tgrs.2022.3168192" @default.
- W4226193485 hasPublicationYear "2022" @default.
- W4226193485 type Work @default.
- W4226193485 citedByCount "8" @default.
- W4226193485 countsByYear W42261934852022 @default.
- W4226193485 countsByYear W42261934852023 @default.
- W4226193485 crossrefType "journal-article" @default.
- W4226193485 hasAuthorship W4226193485A5013112875 @default.
- W4226193485 hasAuthorship W4226193485A5062166339 @default.
- W4226193485 hasAuthorship W4226193485A5073289935 @default.
- W4226193485 hasAuthorship W4226193485A5074354427 @default.
- W4226193485 hasAuthorship W4226193485A5079590055 @default.
- W4226193485 hasConcept C101738243 @default.
- W4226193485 hasConcept C108583219 @default.
- W4226193485 hasConcept C132525143 @default.
- W4226193485 hasConcept C146849305 @default.
- W4226193485 hasConcept C153180895 @default.
- W4226193485 hasConcept C154945302 @default.
- W4226193485 hasConcept C31972630 @default.
- W4226193485 hasConcept C41008148 @default.
- W4226193485 hasConcept C45347329 @default.
- W4226193485 hasConcept C50644808 @default.
- W4226193485 hasConcept C80444323 @default.
- W4226193485 hasConceptScore W4226193485C101738243 @default.
- W4226193485 hasConceptScore W4226193485C108583219 @default.
- W4226193485 hasConceptScore W4226193485C132525143 @default.
- W4226193485 hasConceptScore W4226193485C146849305 @default.
- W4226193485 hasConceptScore W4226193485C153180895 @default.
- W4226193485 hasConceptScore W4226193485C154945302 @default.
- W4226193485 hasConceptScore W4226193485C31972630 @default.
- W4226193485 hasConceptScore W4226193485C41008148 @default.
- W4226193485 hasConceptScore W4226193485C45347329 @default.
- W4226193485 hasConceptScore W4226193485C50644808 @default.
- W4226193485 hasConceptScore W4226193485C80444323 @default.
- W4226193485 hasFunder F4320321001 @default.