Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226193666> ?p ?o ?g. }
- W4226193666 endingPage "30" @default.
- W4226193666 startingPage "30" @default.
- W4226193666 abstract "Understanding the halo-galaxy connection is fundamental in order to improve our knowledge on the nature and properties of dark matter. In this work we build a model that infers the mass of a halo given the positions, velocities, stellar masses, and radii of the galaxies it hosts. In order to capture information from correlations among galaxy properties and their phase-space, we use Graph Neural Networks (GNNs), that are designed to work with irregular and sparse data. We train our models on galaxies from more than 2,000 state-of-the-art simulations from the Cosmology and Astrophysics with MachinE Learning Simulations (CAMELS) project. Our model, that accounts for cosmological and astrophysical uncertainties, is able to constrain the masses of the halos with a $sim$0.2 dex accuracy. Furthermore, a GNN trained on a suite of simulations is able to preserve part of its accuracy when tested on simulations run with a different code that utilizes a distinct subgrid physics model, showing the robustness of our method. The PyTorch Geometric implementation of the GNN is publicly available on Github at https://github.com/PabloVD/HaloGraphNet" @default.
- W4226193666 created "2022-05-05" @default.
- W4226193666 creator A5002061021 @default.
- W4226193666 creator A5005759342 @default.
- W4226193666 creator A5008589829 @default.
- W4226193666 creator A5014522902 @default.
- W4226193666 creator A5024867496 @default.
- W4226193666 creator A5034385563 @default.
- W4226193666 creator A5057320280 @default.
- W4226193666 creator A5066497572 @default.
- W4226193666 creator A5081711451 @default.
- W4226193666 creator A5091900050 @default.
- W4226193666 date "2022-08-01" @default.
- W4226193666 modified "2023-09-30" @default.
- W4226193666 title "Inferring Halo Masses with Graph Neural Networks" @default.
- W4226193666 cites W1998515260 @default.
- W4226193666 cites W2033786055 @default.
- W4226193666 cites W2037732502 @default.
- W4226193666 cites W2042561599 @default.
- W4226193666 cites W2059302115 @default.
- W4226193666 cites W2077054687 @default.
- W4226193666 cites W2101349161 @default.
- W4226193666 cites W2111032670 @default.
- W4226193666 cites W2115575809 @default.
- W4226193666 cites W2119761998 @default.
- W4226193666 cites W2170184648 @default.
- W4226193666 cites W2246040896 @default.
- W4226193666 cites W2316324992 @default.
- W4226193666 cites W2338337769 @default.
- W4226193666 cites W2468373122 @default.
- W4226193666 cites W2530859692 @default.
- W4226193666 cites W2600163159 @default.
- W4226193666 cites W2735189638 @default.
- W4226193666 cites W2735395126 @default.
- W4226193666 cites W2735531560 @default.
- W4226193666 cites W2897760057 @default.
- W4226193666 cites W2898981697 @default.
- W4226193666 cites W2904186977 @default.
- W4226193666 cites W2912395310 @default.
- W4226193666 cites W2914193216 @default.
- W4226193666 cites W2953228579 @default.
- W4226193666 cites W2964716939 @default.
- W4226193666 cites W2972734562 @default.
- W4226193666 cites W2999771842 @default.
- W4226193666 cites W3012085163 @default.
- W4226193666 cites W3027323145 @default.
- W4226193666 cites W3084112123 @default.
- W4226193666 cites W3084313453 @default.
- W4226193666 cites W3087196548 @default.
- W4226193666 cites W3090074396 @default.
- W4226193666 cites W3098086029 @default.
- W4226193666 cites W3098221464 @default.
- W4226193666 cites W3098629121 @default.
- W4226193666 cites W3098985058 @default.
- W4226193666 cites W3100294950 @default.
- W4226193666 cites W3100786366 @default.
- W4226193666 cites W3101073376 @default.
- W4226193666 cites W3102844577 @default.
- W4226193666 cites W3105514098 @default.
- W4226193666 cites W3106456019 @default.
- W4226193666 cites W3126379213 @default.
- W4226193666 cites W3129156620 @default.
- W4226193666 cites W3199165652 @default.
- W4226193666 cites W3199648103 @default.
- W4226193666 cites W3210515183 @default.
- W4226193666 cites W4285092107 @default.
- W4226193666 doi "https://doi.org/10.3847/1538-4357/ac7aa3" @default.
- W4226193666 hasPublicationYear "2022" @default.
- W4226193666 type Work @default.
- W4226193666 citedByCount "12" @default.
- W4226193666 countsByYear W42261936662022 @default.
- W4226193666 countsByYear W42261936662023 @default.
- W4226193666 crossrefType "journal-article" @default.
- W4226193666 hasAuthorship W4226193666A5002061021 @default.
- W4226193666 hasAuthorship W4226193666A5005759342 @default.
- W4226193666 hasAuthorship W4226193666A5008589829 @default.
- W4226193666 hasAuthorship W4226193666A5014522902 @default.
- W4226193666 hasAuthorship W4226193666A5024867496 @default.
- W4226193666 hasAuthorship W4226193666A5034385563 @default.
- W4226193666 hasAuthorship W4226193666A5057320280 @default.
- W4226193666 hasAuthorship W4226193666A5066497572 @default.
- W4226193666 hasAuthorship W4226193666A5081711451 @default.
- W4226193666 hasAuthorship W4226193666A5091900050 @default.
- W4226193666 hasBestOaLocation W42261936661 @default.
- W4226193666 hasConcept C104317684 @default.
- W4226193666 hasConcept C121332964 @default.
- W4226193666 hasConcept C154945302 @default.
- W4226193666 hasConcept C159249277 @default.
- W4226193666 hasConcept C184665706 @default.
- W4226193666 hasConcept C185592680 @default.
- W4226193666 hasConcept C26405456 @default.
- W4226193666 hasConcept C41008148 @default.
- W4226193666 hasConcept C44870925 @default.
- W4226193666 hasConcept C50644808 @default.
- W4226193666 hasConcept C55493867 @default.
- W4226193666 hasConcept C63479239 @default.
- W4226193666 hasConcept C88148261 @default.
- W4226193666 hasConcept C98444146 @default.