Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226201105> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W4226201105 abstract "Neumann series underlie both Krylov methods and algebraic multigrid smoothers. A low-synch modified Gram-Schmidt (MGS)-GMRES algorithm is described that employs a Neumann series to accelerate the projection step. A corollary to the backward stability result of Paige et al. (2006) demonstrates that the truncated Neumann series approximation is sufficient for convergence of GMRES. The lower triangular solver associated with the correction matrix $T_m = (: I + L_m :)^{-1}$ may then be replaced by a matrix-vector product with $T_m = I - L_m$. Next, Neumann series are applied to accelerate the classical Ruge-Stuben algebraic multigrid preconditioner using both a polynomial Gauss-Seidel or incomplete ILU smoother. The sparse triangular solver employed in these smoothers is replaced by an inner iteration based upon matrix-vector products. Henrici's departure from normality of the associated iteration matrices leads to a better understanding of these series. Connections are made between the (non)normality of the $L$ and $U$ factors and nonlinear stability analysis, as well as the pseudospectra of the coefficient matrix. Furthermore, re-orderings that preserve structural symmetry also reduce the departure from normality of the upper triangular factor and improve the relative residual of the triangular solves. To demonstrate the effectiveness of this approach on many-core architectures, the proposed solver and preconditioner are applied to the pressure continuity equation for the incompressible Navier-Stokes equations of fluid motion. The pressure solve time is reduced considerably with no change in the convergence rate and the polynomial Gauss-Seidel smoother is compared with a Jacobi smoother. Numerical and timing results are presented for Nalu-Wind and the PeleLM combustion codes, where ILU with iterative triangular solvers is shown to be much more effective than polynomial Gauss-Seidel." @default.
- W4226201105 created "2022-05-05" @default.
- W4226201105 creator A5015945152 @default.
- W4226201105 creator A5016341553 @default.
- W4226201105 creator A5039776957 @default.
- W4226201105 creator A5053921290 @default.
- W4226201105 creator A5088682508 @default.
- W4226201105 date "2021-12-29" @default.
- W4226201105 modified "2023-09-27" @default.
- W4226201105 title "Neumann Series in GMRES and Algebraic Multigrid Smoothers" @default.
- W4226201105 doi "https://doi.org/10.48550/arxiv.2112.14681" @default.
- W4226201105 hasPublicationYear "2021" @default.
- W4226201105 type Work @default.
- W4226201105 citedByCount "0" @default.
- W4226201105 crossrefType "posted-content" @default.
- W4226201105 hasAuthorship W4226201105A5015945152 @default.
- W4226201105 hasAuthorship W4226201105A5016341553 @default.
- W4226201105 hasAuthorship W4226201105A5039776957 @default.
- W4226201105 hasAuthorship W4226201105A5053921290 @default.
- W4226201105 hasAuthorship W4226201105A5088682508 @default.
- W4226201105 hasBestOaLocation W42262011051 @default.
- W4226201105 hasConcept C104528550 @default.
- W4226201105 hasConcept C106487976 @default.
- W4226201105 hasConcept C126255220 @default.
- W4226201105 hasConcept C134306372 @default.
- W4226201105 hasConcept C137119250 @default.
- W4226201105 hasConcept C137343772 @default.
- W4226201105 hasConcept C155332342 @default.
- W4226201105 hasConcept C159985019 @default.
- W4226201105 hasConcept C167431342 @default.
- W4226201105 hasConcept C192562407 @default.
- W4226201105 hasConcept C202444582 @default.
- W4226201105 hasConcept C2778770139 @default.
- W4226201105 hasConcept C28826006 @default.
- W4226201105 hasConcept C33923547 @default.
- W4226201105 hasConcept C6802819 @default.
- W4226201105 hasConcept C93779851 @default.
- W4226201105 hasConcept C96442724 @default.
- W4226201105 hasConceptScore W4226201105C104528550 @default.
- W4226201105 hasConceptScore W4226201105C106487976 @default.
- W4226201105 hasConceptScore W4226201105C126255220 @default.
- W4226201105 hasConceptScore W4226201105C134306372 @default.
- W4226201105 hasConceptScore W4226201105C137119250 @default.
- W4226201105 hasConceptScore W4226201105C137343772 @default.
- W4226201105 hasConceptScore W4226201105C155332342 @default.
- W4226201105 hasConceptScore W4226201105C159985019 @default.
- W4226201105 hasConceptScore W4226201105C167431342 @default.
- W4226201105 hasConceptScore W4226201105C192562407 @default.
- W4226201105 hasConceptScore W4226201105C202444582 @default.
- W4226201105 hasConceptScore W4226201105C2778770139 @default.
- W4226201105 hasConceptScore W4226201105C28826006 @default.
- W4226201105 hasConceptScore W4226201105C33923547 @default.
- W4226201105 hasConceptScore W4226201105C6802819 @default.
- W4226201105 hasConceptScore W4226201105C93779851 @default.
- W4226201105 hasConceptScore W4226201105C96442724 @default.
- W4226201105 hasLocation W42262011051 @default.
- W4226201105 hasOpenAccess W4226201105 @default.
- W4226201105 hasPrimaryLocation W42262011051 @default.
- W4226201105 hasRelatedWork W123348142 @default.
- W4226201105 hasRelatedWork W1607768458 @default.
- W4226201105 hasRelatedWork W1981246453 @default.
- W4226201105 hasRelatedWork W2052404720 @default.
- W4226201105 hasRelatedWork W2742455921 @default.
- W4226201105 hasRelatedWork W3130672287 @default.
- W4226201105 hasRelatedWork W3135525767 @default.
- W4226201105 hasRelatedWork W4213410328 @default.
- W4226201105 hasRelatedWork W4287641365 @default.
- W4226201105 hasRelatedWork W4297670589 @default.
- W4226201105 isParatext "false" @default.
- W4226201105 isRetracted "false" @default.
- W4226201105 workType "article" @default.