Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226211505> ?p ?o ?g. }
- W4226211505 endingPage "37" @default.
- W4226211505 startingPage "1" @default.
- W4226211505 abstract "Area under the ROC curve, a.k.a. AUC, is a measure of choice for assessing the performance of a classifier for imbalanced data. AUC maximization refers to a learning paradigm that learns a predictive model by directly maximizing its AUC score. It has been studied for more than two decades dating back to late 90s, and a huge amount of work has been devoted to AUC maximization since then. Recently, stochastic AUC maximization for big data and deep AUC maximization (DAM) for deep learning have received increasing attention and yielded dramatic impact for solving real-world problems. However, to the best our knowledge, there is no comprehensive survey of related works for AUC maximization. This article aims to address the gap by reviewing the literature in the past two decades. We not only give a holistic view of the literature but also present detailed explanations and comparisons of different papers from formulations to algorithms and theoretical guarantees. We also identify and discuss remaining and emerging issues for DAM and provide suggestions on topics for future work." @default.
- W4226211505 created "2022-05-05" @default.
- W4226211505 creator A5023288846 @default.
- W4226211505 creator A5048960543 @default.
- W4226211505 date "2022-12-23" @default.
- W4226211505 modified "2023-10-17" @default.
- W4226211505 title "AUC Maximization in the Era of Big Data and AI: A Survey" @default.
- W4226211505 cites W1494085563 @default.
- W4226211505 cites W1503442267 @default.
- W4226211505 cites W1578811956 @default.
- W4226211505 cites W1674652814 @default.
- W4226211505 cites W1848761947 @default.
- W4226211505 cites W1912982817 @default.
- W4226211505 cites W1968392632 @default.
- W4226211505 cites W1992208280 @default.
- W4226211505 cites W1994642659 @default.
- W4226211505 cites W2012242422 @default.
- W4226211505 cites W2025402514 @default.
- W4226211505 cites W2028034626 @default.
- W4226211505 cites W2028214808 @default.
- W4226211505 cites W2031651203 @default.
- W4226211505 cites W2032210760 @default.
- W4226211505 cites W2048905749 @default.
- W4226211505 cites W2053920233 @default.
- W4226211505 cites W2055630880 @default.
- W4226211505 cites W2056716237 @default.
- W4226211505 cites W2068696370 @default.
- W4226211505 cites W2070771761 @default.
- W4226211505 cites W2074694452 @default.
- W4226211505 cites W2078622638 @default.
- W4226211505 cites W2080597023 @default.
- W4226211505 cites W2083905053 @default.
- W4226211505 cites W2111021814 @default.
- W4226211505 cites W2119885577 @default.
- W4226211505 cites W2121990650 @default.
- W4226211505 cites W2139338362 @default.
- W4226211505 cites W2150734023 @default.
- W4226211505 cites W2157825442 @default.
- W4226211505 cites W2165880761 @default.
- W4226211505 cites W2167732364 @default.
- W4226211505 cites W2169816580 @default.
- W4226211505 cites W2271825318 @default.
- W4226211505 cites W2274052023 @default.
- W4226211505 cites W2294586855 @default.
- W4226211505 cites W2395021187 @default.
- W4226211505 cites W2405366961 @default.
- W4226211505 cites W2510934692 @default.
- W4226211505 cites W2513039057 @default.
- W4226211505 cites W2532702805 @default.
- W4226211505 cites W2580347120 @default.
- W4226211505 cites W2594183968 @default.
- W4226211505 cites W2616179093 @default.
- W4226211505 cites W2734575741 @default.
- W4226211505 cites W2772118439 @default.
- W4226211505 cites W2772723798 @default.
- W4226211505 cites W2778050657 @default.
- W4226211505 cites W2806857275 @default.
- W4226211505 cites W2844677341 @default.
- W4226211505 cites W2891908042 @default.
- W4226211505 cites W2905265212 @default.
- W4226211505 cites W2920807444 @default.
- W4226211505 cites W2936503027 @default.
- W4226211505 cites W2942346399 @default.
- W4226211505 cites W2949927612 @default.
- W4226211505 cites W2951169625 @default.
- W4226211505 cites W2954471638 @default.
- W4226211505 cites W2962828272 @default.
- W4226211505 cites W2963190258 @default.
- W4226211505 cites W2963466845 @default.
- W4226211505 cites W2964106386 @default.
- W4226211505 cites W2964154500 @default.
- W4226211505 cites W2964323557 @default.
- W4226211505 cites W2994278089 @default.
- W4226211505 cites W2997060212 @default.
- W4226211505 cites W2997832723 @default.
- W4226211505 cites W3011766119 @default.
- W4226211505 cites W3081837818 @default.
- W4226211505 cites W3094497568 @default.
- W4226211505 cites W3120430728 @default.
- W4226211505 cites W3127479739 @default.
- W4226211505 cites W3128564580 @default.
- W4226211505 cites W3139831892 @default.
- W4226211505 cites W3183862858 @default.
- W4226211505 cites W3201883274 @default.
- W4226211505 cites W41027960 @default.
- W4226211505 cites W4224319742 @default.
- W4226211505 cites W4230445183 @default.
- W4226211505 cites W4244068819 @default.
- W4226211505 cites W4292022450 @default.
- W4226211505 doi "https://doi.org/10.1145/3554729" @default.
- W4226211505 hasPublicationYear "2022" @default.
- W4226211505 type Work @default.
- W4226211505 citedByCount "10" @default.
- W4226211505 countsByYear W42262115052023 @default.
- W4226211505 crossrefType "journal-article" @default.
- W4226211505 hasAuthorship W4226211505A5023288846 @default.
- W4226211505 hasAuthorship W4226211505A5048960543 @default.
- W4226211505 hasBestOaLocation W42262115051 @default.