Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226219071> ?p ?o ?g. }
- W4226219071 endingPage "12" @default.
- W4226219071 startingPage "1" @default.
- W4226219071 abstract "In the field of remote sensing, due to memory consumption and computational burden, the single-image super-resolution (SISR) methods based on deep convolution neural networks (CNNs) are limited in practical application. To address this problem, we propose a lightweight feature enhancement network (FeNet) for accurate remote-sensing image super-resolution (SR). Considering the existence of equipment with extremely poor hardware facilities, we further design a lighter FeNet-baseline with about 158K parameters. Specifically, inspired by lattice structure, we construct a lightweight lattice block (LLB) as a nonlinear feature extraction function to improve the expression ability. Here, channel separation operation makes the upper and lower branches of the LLB only responsible for half of the features, and the weight coefficients calculated through the attention mechanism enable the upper and lower branches to communicate efficiently. Based on LLB, the feature enhancement block (FEB) is designed in a nested manner to obtain expressive features, where different layers are responsible for the features with different texture richness, and then features from different layers are sequentially fused from deep to shallow. Model parameters and multi-adds operations are used to evaluate network complexity, and extensive experiments on two remote-sensing and four SR benchmark test datasets show that our methods can achieve a good tradeoff between complexity and performance. Our code will be available at <uri xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>https://github.com/wangzheyuan-666/FeNet</uri> ." @default.
- W4226219071 created "2022-05-05" @default.
- W4226219071 creator A5006775539 @default.
- W4226219071 creator A5044394722 @default.
- W4226219071 creator A5045058519 @default.
- W4226219071 creator A5067691725 @default.
- W4226219071 creator A5068462700 @default.
- W4226219071 creator A5075551339 @default.
- W4226219071 creator A5079790462 @default.
- W4226219071 date "2022-01-01" @default.
- W4226219071 modified "2023-09-24" @default.
- W4226219071 title "FeNet: Feature Enhancement Network for Lightweight Remote-Sensing Image Super-Resolution" @default.
- W4226219071 cites W1885185971 @default.
- W4226219071 cites W1930824406 @default.
- W4226219071 cites W1980038761 @default.
- W4226219071 cites W1992408872 @default.
- W4226219071 cites W2047920195 @default.
- W4226219071 cites W2095145310 @default.
- W4226219071 cites W2121058967 @default.
- W4226219071 cites W2121927366 @default.
- W4226219071 cites W2150081556 @default.
- W4226219071 cites W2157190232 @default.
- W4226219071 cites W2214802144 @default.
- W4226219071 cites W2242218935 @default.
- W4226219071 cites W2476548250 @default.
- W4226219071 cites W2601517469 @default.
- W4226219071 cites W2621121458 @default.
- W4226219071 cites W2747898905 @default.
- W4226219071 cites W2795024892 @default.
- W4226219071 cites W2798748382 @default.
- W4226219071 cites W2954930822 @default.
- W4226219071 cites W2956181704 @default.
- W4226219071 cites W2963037581 @default.
- W4226219071 cites W2963182372 @default.
- W4226219071 cites W2964101377 @default.
- W4226219071 cites W2964125708 @default.
- W4226219071 cites W2964277374 @default.
- W4226219071 cites W2976372274 @default.
- W4226219071 cites W2986556279 @default.
- W4226219071 cites W3005521100 @default.
- W4226219071 cites W3010250471 @default.
- W4226219071 cites W3011005573 @default.
- W4226219071 cites W3032940603 @default.
- W4226219071 cites W3034247386 @default.
- W4226219071 cites W3043692043 @default.
- W4226219071 cites W3046108465 @default.
- W4226219071 cites W3046131703 @default.
- W4226219071 cites W3085051361 @default.
- W4226219071 cites W3104028135 @default.
- W4226219071 cites W3105328221 @default.
- W4226219071 cites W3131191133 @default.
- W4226219071 cites W3133953507 @default.
- W4226219071 cites W3135420168 @default.
- W4226219071 cites W3203229600 @default.
- W4226219071 cites W3206098624 @default.
- W4226219071 doi "https://doi.org/10.1109/tgrs.2022.3168787" @default.
- W4226219071 hasPublicationYear "2022" @default.
- W4226219071 type Work @default.
- W4226219071 citedByCount "7" @default.
- W4226219071 countsByYear W42262190712022 @default.
- W4226219071 countsByYear W42262190712023 @default.
- W4226219071 crossrefType "journal-article" @default.
- W4226219071 hasAuthorship W4226219071A5006775539 @default.
- W4226219071 hasAuthorship W4226219071A5044394722 @default.
- W4226219071 hasAuthorship W4226219071A5045058519 @default.
- W4226219071 hasAuthorship W4226219071A5067691725 @default.
- W4226219071 hasAuthorship W4226219071A5068462700 @default.
- W4226219071 hasAuthorship W4226219071A5075551339 @default.
- W4226219071 hasAuthorship W4226219071A5079790462 @default.
- W4226219071 hasConcept C113775141 @default.
- W4226219071 hasConcept C11413529 @default.
- W4226219071 hasConcept C124101348 @default.
- W4226219071 hasConcept C127313418 @default.
- W4226219071 hasConcept C13280743 @default.
- W4226219071 hasConcept C138885662 @default.
- W4226219071 hasConcept C153180895 @default.
- W4226219071 hasConcept C154945302 @default.
- W4226219071 hasConcept C177264268 @default.
- W4226219071 hasConcept C185798385 @default.
- W4226219071 hasConcept C199360897 @default.
- W4226219071 hasConcept C2524010 @default.
- W4226219071 hasConcept C2776401178 @default.
- W4226219071 hasConcept C2776760102 @default.
- W4226219071 hasConcept C2777210771 @default.
- W4226219071 hasConcept C33923547 @default.
- W4226219071 hasConcept C41008148 @default.
- W4226219071 hasConcept C41895202 @default.
- W4226219071 hasConcept C45347329 @default.
- W4226219071 hasConcept C50644808 @default.
- W4226219071 hasConcept C52622490 @default.
- W4226219071 hasConcept C62649853 @default.
- W4226219071 hasConceptScore W4226219071C113775141 @default.
- W4226219071 hasConceptScore W4226219071C11413529 @default.
- W4226219071 hasConceptScore W4226219071C124101348 @default.
- W4226219071 hasConceptScore W4226219071C127313418 @default.
- W4226219071 hasConceptScore W4226219071C13280743 @default.
- W4226219071 hasConceptScore W4226219071C138885662 @default.
- W4226219071 hasConceptScore W4226219071C153180895 @default.