Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226219974> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4226219974 endingPage "10" @default.
- W4226219974 startingPage "1" @default.
- W4226219974 abstract "Humans express emotions in many ways, such as gestures, limbs, and expressions. Among them, facial expressions are the most intuitive way to express human inner emotional activities in human-to-human communication. With the rapid development of computer vision, facial expression recognition is an important research topic in the field of computer vision. It plays a key role in nonverbal communication and can be applied to human-computer interaction, social robotics, video games, and other fields. Traditional expression recognition algorithms require complex manual feature extraction, which takes a long time, and the accuracy of expression recognition in complex scenes is not high. However, with the development of deep learning, especially the convolutional neural network, facial expression recognition technology has also developed rapidly, and the recognition accuracy has been greatly improved. This paper studies the facial expression recognition method of classroom children’s game video based on convolutional neural network and proposes a convolutional neural network with deeper layers. The full connection is modified to 4 layers of convolution, 4 layers of pooling, and 2 layers of full connection. Firstly, the facial expression image is preprocessed by, for example, key point location, face cropping, and image normalization; then, the convolutional layer is used to extract the low-dimensional and high-dimensional feature information of the face image; and the pooling layer is used to extract the face image. The feature information is dimensionally reduced. Finally, the softmax classifier is used to classify and recognize the expressions of the training sample images. In order to improve the accuracy of expression recognition, a self-made set of labeled pictures was added to the expression training set. Simulation and comparison experiments show that the improved model has higher accuracy and smoother loss curve, which verifies the effectiveness of the improved network." @default.
- W4226219974 created "2022-05-05" @default.
- W4226219974 creator A5088358184 @default.
- W4226219974 date "2022-04-08" @default.
- W4226219974 modified "2023-10-14" @default.
- W4226219974 title "Expression Recognition of Classroom Children’s Game Video Based on Improved Convolutional Neural Network" @default.
- W4226219974 cites W1982881617 @default.
- W4226219974 cites W2003869503 @default.
- W4226219974 cites W2066126675 @default.
- W4226219974 cites W2133115749 @default.
- W4226219974 cites W2139008940 @default.
- W4226219974 cites W2289465909 @default.
- W4226219974 cites W2401896499 @default.
- W4226219974 cites W2585741216 @default.
- W4226219974 cites W2600698132 @default.
- W4226219974 cites W2607482776 @default.
- W4226219974 cites W2734132498 @default.
- W4226219974 cites W2794286365 @default.
- W4226219974 cites W2963552033 @default.
- W4226219974 cites W3023739323 @default.
- W4226219974 cites W3122592429 @default.
- W4226219974 cites W3123603330 @default.
- W4226219974 cites W3126119766 @default.
- W4226219974 cites W326311364 @default.
- W4226219974 doi "https://doi.org/10.1155/2022/5203022" @default.
- W4226219974 hasPublicationYear "2022" @default.
- W4226219974 type Work @default.
- W4226219974 citedByCount "0" @default.
- W4226219974 crossrefType "journal-article" @default.
- W4226219974 hasAuthorship W4226219974A5088358184 @default.
- W4226219974 hasConcept C108583219 @default.
- W4226219974 hasConcept C136886441 @default.
- W4226219974 hasConcept C138885662 @default.
- W4226219974 hasConcept C144024400 @default.
- W4226219974 hasConcept C153180895 @default.
- W4226219974 hasConcept C154945302 @default.
- W4226219974 hasConcept C159437735 @default.
- W4226219974 hasConcept C188441871 @default.
- W4226219974 hasConcept C19165224 @default.
- W4226219974 hasConcept C195704467 @default.
- W4226219974 hasConcept C207347870 @default.
- W4226219974 hasConcept C2776401178 @default.
- W4226219974 hasConcept C28490314 @default.
- W4226219974 hasConcept C31510193 @default.
- W4226219974 hasConcept C31972630 @default.
- W4226219974 hasConcept C41008148 @default.
- W4226219974 hasConcept C41895202 @default.
- W4226219974 hasConcept C4641261 @default.
- W4226219974 hasConcept C52622490 @default.
- W4226219974 hasConcept C70437156 @default.
- W4226219974 hasConcept C81363708 @default.
- W4226219974 hasConcept C88799230 @default.
- W4226219974 hasConcept C95623464 @default.
- W4226219974 hasConceptScore W4226219974C108583219 @default.
- W4226219974 hasConceptScore W4226219974C136886441 @default.
- W4226219974 hasConceptScore W4226219974C138885662 @default.
- W4226219974 hasConceptScore W4226219974C144024400 @default.
- W4226219974 hasConceptScore W4226219974C153180895 @default.
- W4226219974 hasConceptScore W4226219974C154945302 @default.
- W4226219974 hasConceptScore W4226219974C159437735 @default.
- W4226219974 hasConceptScore W4226219974C188441871 @default.
- W4226219974 hasConceptScore W4226219974C19165224 @default.
- W4226219974 hasConceptScore W4226219974C195704467 @default.
- W4226219974 hasConceptScore W4226219974C207347870 @default.
- W4226219974 hasConceptScore W4226219974C2776401178 @default.
- W4226219974 hasConceptScore W4226219974C28490314 @default.
- W4226219974 hasConceptScore W4226219974C31510193 @default.
- W4226219974 hasConceptScore W4226219974C31972630 @default.
- W4226219974 hasConceptScore W4226219974C41008148 @default.
- W4226219974 hasConceptScore W4226219974C41895202 @default.
- W4226219974 hasConceptScore W4226219974C4641261 @default.
- W4226219974 hasConceptScore W4226219974C52622490 @default.
- W4226219974 hasConceptScore W4226219974C70437156 @default.
- W4226219974 hasConceptScore W4226219974C81363708 @default.
- W4226219974 hasConceptScore W4226219974C88799230 @default.
- W4226219974 hasConceptScore W4226219974C95623464 @default.
- W4226219974 hasLocation W42262199741 @default.
- W4226219974 hasOpenAccess W4226219974 @default.
- W4226219974 hasPrimaryLocation W42262199741 @default.
- W4226219974 hasRelatedWork W1982770690 @default.
- W4226219974 hasRelatedWork W2026355170 @default.
- W4226219974 hasRelatedWork W2140205990 @default.
- W4226219974 hasRelatedWork W2291847203 @default.
- W4226219974 hasRelatedWork W3000095492 @default.
- W4226219974 hasRelatedWork W3041882350 @default.
- W4226219974 hasRelatedWork W4205647891 @default.
- W4226219974 hasRelatedWork W4285285372 @default.
- W4226219974 hasRelatedWork W2182569223 @default.
- W4226219974 hasRelatedWork W3126631784 @default.
- W4226219974 hasVolume "2022" @default.
- W4226219974 isParatext "false" @default.
- W4226219974 isRetracted "false" @default.
- W4226219974 workType "article" @default.