Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226224607> ?p ?o ?g. }
- W4226224607 endingPage "607" @default.
- W4226224607 startingPage "594" @default.
- W4226224607 abstract "Non-negative Tucker decomposition (NTD) is one of the most popular techniques for tensor data representation. To enhance the representation ability of NTD by multiple intrinsic cues, that is, manifold structure and supervisory information, in this article, we propose a generalized graph regularized NTD (GNTD) framework for tensor data representation. We first develop the unsupervised GNTD (UGNTD) method by constructing the nearest neighbor graph to maintain the intrinsic manifold structure of tensor data. Then, when limited must-link and cannot-link constraints are given, unlike most existing semisupervised learning methods that only use the pregiven supervisory information, we propagate the constraints through the entire dataset and then build a semisupervised graph weight matrix by which we can formulate the semisupervised GNTD (SGNTD). Moreover, we develop a fast and efficient alternating proximal gradient-based algorithm to solve the optimization problem and show its convergence and correctness. The experimental results on unsupervised and semisupervised clustering tasks using four image datasets demonstrate the effectiveness and high efficiency of the proposed methods." @default.
- W4226224607 created "2022-05-05" @default.
- W4226224607 creator A5009762301 @default.
- W4226224607 creator A5023406954 @default.
- W4226224607 creator A5043262479 @default.
- W4226224607 creator A5070961417 @default.
- W4226224607 creator A5090101808 @default.
- W4226224607 date "2022-01-01" @default.
- W4226224607 modified "2023-10-17" @default.
- W4226224607 title "A Generalized Graph Regularized Non-Negative Tucker Decomposition Framework for Tensor Data Representation" @default.
- W4226224607 cites W1084418525 @default.
- W4226224607 cites W1488435683 @default.
- W4226224607 cites W1706897027 @default.
- W4226224607 cites W1875623881 @default.
- W4226224607 cites W1878057855 @default.
- W4226224607 cites W1893333638 @default.
- W4226224607 cites W1902027874 @default.
- W4226224607 cites W1968970305 @default.
- W4226224607 cites W1970176196 @default.
- W4226224607 cites W1973261891 @default.
- W4226224607 cites W1978219056 @default.
- W4226224607 cites W1983069960 @default.
- W4226224607 cites W2007509694 @default.
- W4226224607 cites W2014466433 @default.
- W4226224607 cites W2024165284 @default.
- W4226224607 cites W2028302281 @default.
- W4226224607 cites W2073382079 @default.
- W4226224607 cites W2079223014 @default.
- W4226224607 cites W2100556411 @default.
- W4226224607 cites W2103423124 @default.
- W4226224607 cites W2104819583 @default.
- W4226224607 cites W2108119513 @default.
- W4226224607 cites W2108919995 @default.
- W4226224607 cites W2112359769 @default.
- W4226224607 cites W2117852776 @default.
- W4226224607 cites W2118774738 @default.
- W4226224607 cites W2119412403 @default.
- W4226224607 cites W2121947440 @default.
- W4226224607 cites W2126447985 @default.
- W4226224607 cites W2134262590 @default.
- W4226224607 cites W2135463994 @default.
- W4226224607 cites W2155151262 @default.
- W4226224607 cites W2158821123 @default.
- W4226224607 cites W2163927692 @default.
- W4226224607 cites W2165702682 @default.
- W4226224607 cites W2222512263 @default.
- W4226224607 cites W2294040673 @default.
- W4226224607 cites W2330699524 @default.
- W4226224607 cites W2342432191 @default.
- W4226224607 cites W2494395359 @default.
- W4226224607 cites W2607323999 @default.
- W4226224607 cites W2751253323 @default.
- W4226224607 cites W2790863173 @default.
- W4226224607 cites W2939678455 @default.
- W4226224607 cites W4239851541 @default.
- W4226224607 cites W4243461261 @default.
- W4226224607 doi "https://doi.org/10.1109/tcyb.2020.2979344" @default.
- W4226224607 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32275631" @default.
- W4226224607 hasPublicationYear "2022" @default.
- W4226224607 type Work @default.
- W4226224607 citedByCount "26" @default.
- W4226224607 countsByYear W42262246072020 @default.
- W4226224607 countsByYear W42262246072021 @default.
- W4226224607 countsByYear W42262246072022 @default.
- W4226224607 countsByYear W42262246072023 @default.
- W4226224607 crossrefType "journal-article" @default.
- W4226224607 hasAuthorship W4226224607A5009762301 @default.
- W4226224607 hasAuthorship W4226224607A5023406954 @default.
- W4226224607 hasAuthorship W4226224607A5043262479 @default.
- W4226224607 hasAuthorship W4226224607A5070961417 @default.
- W4226224607 hasAuthorship W4226224607A5090101808 @default.
- W4226224607 hasConcept C11413529 @default.
- W4226224607 hasConcept C116409475 @default.
- W4226224607 hasConcept C121332964 @default.
- W4226224607 hasConcept C132525143 @default.
- W4226224607 hasConcept C153180895 @default.
- W4226224607 hasConcept C154945302 @default.
- W4226224607 hasConcept C155281189 @default.
- W4226224607 hasConcept C158693339 @default.
- W4226224607 hasConcept C17744445 @default.
- W4226224607 hasConcept C199539241 @default.
- W4226224607 hasConcept C202444582 @default.
- W4226224607 hasConcept C2776359362 @default.
- W4226224607 hasConcept C2986737658 @default.
- W4226224607 hasConcept C33923547 @default.
- W4226224607 hasConcept C41008148 @default.
- W4226224607 hasConcept C42355184 @default.
- W4226224607 hasConcept C42704193 @default.
- W4226224607 hasConcept C55439883 @default.
- W4226224607 hasConcept C62520636 @default.
- W4226224607 hasConcept C73555534 @default.
- W4226224607 hasConcept C80444323 @default.
- W4226224607 hasConcept C94625758 @default.
- W4226224607 hasConceptScore W4226224607C11413529 @default.
- W4226224607 hasConceptScore W4226224607C116409475 @default.
- W4226224607 hasConceptScore W4226224607C121332964 @default.
- W4226224607 hasConceptScore W4226224607C132525143 @default.
- W4226224607 hasConceptScore W4226224607C153180895 @default.