Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226224679> ?p ?o ?g. }
- W4226224679 endingPage "15" @default.
- W4226224679 startingPage "1" @default.
- W4226224679 abstract "The polarimetric interferometric synthetic aperture radar (Pol-InSAR) model under P-band observations exhibits vertical structure diversity. Compared with the exponential-based random volume over ground (RVoG) model, the Gaussian vertical backscatter volume over ground (GVBVoG) model expresses a more complex forest vertical structure via introducing more parameters. On account of the influence of topographic fluctuation on the model, this article establishes the sloped Gaussian vertical backscatter volume over ground (SGVBVoG) model by drawing into the terrain slope. Based upon the SGVBVoG model, this article develops the 2-D SGVBVoG (2-D-SGVBVoG) model by defining the structure factor, which effectively reduces the model complexity from three to two dimensions. In the 2-D-SGVBVoG model inversion, in view of the diversity of forest species, age, shape, density, etc., in the natural scene and the variation of specific radar systems, a structure factor prediction scheme relying on machine learning is proposed. In the machine-learning model training, the radar incidence angle and the PDHigh coherence acquired by coherence optimization with terrain phase removal are utilized as the variables for characterizing the structure factor. Ultimately, in the case of fixing structure factor, a geometric inversion process on the complex plane is put forward to extract the forest height. The BIOSAR 2008 P-band Pol-InSAR data validation shows that the proposed method achieves an RMSE of 3.07 m, which is 24.0% better than the three-baseline SRVoG inversion." @default.
- W4226224679 created "2022-05-05" @default.
- W4226224679 creator A5006901857 @default.
- W4226224679 creator A5015844567 @default.
- W4226224679 creator A5050016843 @default.
- W4226224679 creator A5054367652 @default.
- W4226224679 creator A5056985281 @default.
- W4226224679 creator A5072109429 @default.
- W4226224679 date "2022-01-01" @default.
- W4226224679 modified "2023-09-30" @default.
- W4226224679 title "Machine-Learning Inversion of Forest Vertical Structure Based on 2-D-SGVBVoG Model for P-Band Pol-InSAR" @default.
- W4226224679 cites W1179254689 @default.
- W4226224679 cites W1538058927 @default.
- W4226224679 cites W1948371848 @default.
- W4226224679 cites W1967177682 @default.
- W4226224679 cites W1992541517 @default.
- W4226224679 cites W2008471360 @default.
- W4226224679 cites W2008542193 @default.
- W4226224679 cites W2031681353 @default.
- W4226224679 cites W2044769733 @default.
- W4226224679 cites W2044987471 @default.
- W4226224679 cites W2051478166 @default.
- W4226224679 cites W2053817929 @default.
- W4226224679 cites W2061577342 @default.
- W4226224679 cites W2070765234 @default.
- W4226224679 cites W2076462769 @default.
- W4226224679 cites W2081890088 @default.
- W4226224679 cites W2082306459 @default.
- W4226224679 cites W2099249775 @default.
- W4226224679 cites W2100969332 @default.
- W4226224679 cites W2105850256 @default.
- W4226224679 cites W2114345162 @default.
- W4226224679 cites W2115208023 @default.
- W4226224679 cites W2115897045 @default.
- W4226224679 cites W2119439685 @default.
- W4226224679 cites W2122962067 @default.
- W4226224679 cites W2136314381 @default.
- W4226224679 cites W2142134428 @default.
- W4226224679 cites W2142677925 @default.
- W4226224679 cites W2152429819 @default.
- W4226224679 cites W2158158062 @default.
- W4226224679 cites W2528434646 @default.
- W4226224679 cites W2773498388 @default.
- W4226224679 cites W2908435824 @default.
- W4226224679 cites W2911799365 @default.
- W4226224679 cites W2911964244 @default.
- W4226224679 cites W2943321375 @default.
- W4226224679 cites W3018843109 @default.
- W4226224679 cites W3213682033 @default.
- W4226224679 cites W4235881011 @default.
- W4226224679 doi "https://doi.org/10.1109/tgrs.2021.3091541" @default.
- W4226224679 hasPublicationYear "2022" @default.
- W4226224679 type Work @default.
- W4226224679 citedByCount "1" @default.
- W4226224679 countsByYear W42262246792023 @default.
- W4226224679 crossrefType "journal-article" @default.
- W4226224679 hasAuthorship W4226224679A5006901857 @default.
- W4226224679 hasAuthorship W4226224679A5015844567 @default.
- W4226224679 hasAuthorship W4226224679A5050016843 @default.
- W4226224679 hasAuthorship W4226224679A5054367652 @default.
- W4226224679 hasAuthorship W4226224679A5056985281 @default.
- W4226224679 hasAuthorship W4226224679A5072109429 @default.
- W4226224679 hasConcept C105795698 @default.
- W4226224679 hasConcept C11413529 @default.
- W4226224679 hasConcept C120665830 @default.
- W4226224679 hasConcept C121332964 @default.
- W4226224679 hasConcept C127313418 @default.
- W4226224679 hasConcept C13280743 @default.
- W4226224679 hasConcept C161840515 @default.
- W4226224679 hasConcept C165205528 @default.
- W4226224679 hasConcept C1893757 @default.
- W4226224679 hasConcept C191486275 @default.
- W4226224679 hasConcept C205649164 @default.
- W4226224679 hasConcept C22286887 @default.
- W4226224679 hasConcept C2781181686 @default.
- W4226224679 hasConcept C28493345 @default.
- W4226224679 hasConcept C33923547 @default.
- W4226224679 hasConcept C41008148 @default.
- W4226224679 hasConcept C554190296 @default.
- W4226224679 hasConcept C58640448 @default.
- W4226224679 hasConcept C62649853 @default.
- W4226224679 hasConcept C76155785 @default.
- W4226224679 hasConcept C77928131 @default.
- W4226224679 hasConcept C87360688 @default.
- W4226224679 hasConceptScore W4226224679C105795698 @default.
- W4226224679 hasConceptScore W4226224679C11413529 @default.
- W4226224679 hasConceptScore W4226224679C120665830 @default.
- W4226224679 hasConceptScore W4226224679C121332964 @default.
- W4226224679 hasConceptScore W4226224679C127313418 @default.
- W4226224679 hasConceptScore W4226224679C13280743 @default.
- W4226224679 hasConceptScore W4226224679C161840515 @default.
- W4226224679 hasConceptScore W4226224679C165205528 @default.
- W4226224679 hasConceptScore W4226224679C1893757 @default.
- W4226224679 hasConceptScore W4226224679C191486275 @default.
- W4226224679 hasConceptScore W4226224679C205649164 @default.
- W4226224679 hasConceptScore W4226224679C22286887 @default.
- W4226224679 hasConceptScore W4226224679C2781181686 @default.
- W4226224679 hasConceptScore W4226224679C28493345 @default.