Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226227310> ?p ?o ?g. }
- W4226227310 endingPage "17" @default.
- W4226227310 startingPage "1" @default.
- W4226227310 abstract "Dense time-series remote sensing images have transformed the traditional bitemporal land-cover change detection to continuous monitoring. Previous work mostly employs linear fitting, prediction, or decomposition methods, and the detection accuracy is not high. The latest progress of deep learning (DL) shows its advantages in time-series change monitoring. However, DL models are computationally expensive and require lots of labeled samples, resulting in often employed prediction-threshold-based unsupervised change detection method. However, the determination of a reasonable threshold has always been a big problem. Therefore, we proposed the similarity-measurement-based deep transfer learning for time-series adaptive change detection (SDTL-TSACD) model. First, a standard dynamic time warping (SDTW) distance was proposed and used to cluster large-scale time series into multiple subcategories with high time-series similarity. Second, a time convolutional network (TCN) was used for nonlinear time-series fitting and prediction, and an early stop strategy was used to prevent overfitting. Then, the trained TCN model would be transferred and performed pixel-by-pixel time-series prediction within the same category, and the SDTW was also used to evaluate the prediction accuracy. Finally, the Otsu adaptive threshold was used to detect change points, and the spatial neighbor relationship was used to eliminate the pseudo-change points. Change detection results using 132 benchmark datasets showed that the SDTL-TSACD performed well in both accuracy and efficiency. In addition, the MOD13Q1-EVI images from 2001 to 2020 were used to study the land-cover change of the Loess Plateau, and the SDTL-TSACD also showed a good ability to solve practical problems." @default.
- W4226227310 created "2022-05-05" @default.
- W4226227310 creator A5009116003 @default.
- W4226227310 creator A5021020949 @default.
- W4226227310 creator A5047516173 @default.
- W4226227310 creator A5060621761 @default.
- W4226227310 creator A5074098507 @default.
- W4226227310 creator A5074220692 @default.
- W4226227310 date "2022-01-01" @default.
- W4226227310 modified "2023-10-14" @default.
- W4226227310 title "Large-Area Land-Cover Changes Monitoring With Time-Series Remote Sensing Images Using Transferable Deep Models" @default.
- W4226227310 cites W1536057856 @default.
- W4226227310 cites W1974931421 @default.
- W4226227310 cites W1984067473 @default.
- W4226227310 cites W2028018893 @default.
- W4226227310 cites W2055718260 @default.
- W4226227310 cites W2067985435 @default.
- W4226227310 cites W2098761820 @default.
- W4226227310 cites W2107583574 @default.
- W4226227310 cites W2117671523 @default.
- W4226227310 cites W2139141490 @default.
- W4226227310 cites W2140908571 @default.
- W4226227310 cites W2161336494 @default.
- W4226227310 cites W2230432153 @default.
- W4226227310 cites W2344186514 @default.
- W4226227310 cites W2431738724 @default.
- W4226227310 cites W2529419676 @default.
- W4226227310 cites W2572810799 @default.
- W4226227310 cites W2592532736 @default.
- W4226227310 cites W2726622130 @default.
- W4226227310 cites W2735042947 @default.
- W4226227310 cites W2742424758 @default.
- W4226227310 cites W2790834614 @default.
- W4226227310 cites W2791525675 @default.
- W4226227310 cites W2796265726 @default.
- W4226227310 cites W2811040116 @default.
- W4226227310 cites W2888697548 @default.
- W4226227310 cites W2892035503 @default.
- W4226227310 cites W2899101283 @default.
- W4226227310 cites W2901810010 @default.
- W4226227310 cites W2902040614 @default.
- W4226227310 cites W2903282641 @default.
- W4226227310 cites W2922152173 @default.
- W4226227310 cites W2922225410 @default.
- W4226227310 cites W2942855565 @default.
- W4226227310 cites W2963662460 @default.
- W4226227310 cites W2970478682 @default.
- W4226227310 cites W2976120863 @default.
- W4226227310 cites W2984033187 @default.
- W4226227310 cites W2990323597 @default.
- W4226227310 cites W2992767956 @default.
- W4226227310 cites W2996554203 @default.
- W4226227310 cites W3013297451 @default.
- W4226227310 cites W3035388081 @default.
- W4226227310 cites W3082025683 @default.
- W4226227310 cites W3094319426 @default.
- W4226227310 cites W3120832703 @default.
- W4226227310 cites W3122768880 @default.
- W4226227310 cites W3135715772 @default.
- W4226227310 cites W3158292506 @default.
- W4226227310 cites W4220714068 @default.
- W4226227310 doi "https://doi.org/10.1109/tgrs.2022.3160617" @default.
- W4226227310 hasPublicationYear "2022" @default.
- W4226227310 type Work @default.
- W4226227310 citedByCount "8" @default.
- W4226227310 countsByYear W42262273102022 @default.
- W4226227310 countsByYear W42262273102023 @default.
- W4226227310 crossrefType "journal-article" @default.
- W4226227310 hasAuthorship W4226227310A5009116003 @default.
- W4226227310 hasAuthorship W4226227310A5021020949 @default.
- W4226227310 hasAuthorship W4226227310A5047516173 @default.
- W4226227310 hasAuthorship W4226227310A5060621761 @default.
- W4226227310 hasAuthorship W4226227310A5074098507 @default.
- W4226227310 hasAuthorship W4226227310A5074220692 @default.
- W4226227310 hasConcept C103278499 @default.
- W4226227310 hasConcept C115961682 @default.
- W4226227310 hasConcept C119857082 @default.
- W4226227310 hasConcept C127313418 @default.
- W4226227310 hasConcept C127413603 @default.
- W4226227310 hasConcept C13280743 @default.
- W4226227310 hasConcept C143724316 @default.
- W4226227310 hasConcept C147176958 @default.
- W4226227310 hasConcept C151406439 @default.
- W4226227310 hasConcept C151730666 @default.
- W4226227310 hasConcept C153180895 @default.
- W4226227310 hasConcept C154945302 @default.
- W4226227310 hasConcept C160633673 @default.
- W4226227310 hasConcept C185798385 @default.
- W4226227310 hasConcept C203595873 @default.
- W4226227310 hasConcept C205649164 @default.
- W4226227310 hasConcept C22019652 @default.
- W4226227310 hasConcept C2780648208 @default.
- W4226227310 hasConcept C41008148 @default.
- W4226227310 hasConcept C4792198 @default.
- W4226227310 hasConcept C50644808 @default.
- W4226227310 hasConcept C62649853 @default.
- W4226227310 hasConcept C86803240 @default.
- W4226227310 hasConcept C88516994 @default.