Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226228051> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4226228051 endingPage "45484" @default.
- W4226228051 startingPage "45471" @default.
- W4226228051 abstract "Anticipating pedestrians’ activity is a necessary task for providing a safe and energy efficient environment in an urban area. By locating strategically sensors throughout the city useful information could be obtained. By knowing the average activity of those throughout different days of the week we could identify the typology of the buildings neighboring those sensors. For these type of purposes, clustering methods show great capability forming groups of items that have great similarity intra clusters and dissimilarity inter cluster. Different approaches are made to classify sensors depending on the typology of buildings surrounding them and the mean pedestrians’ counts for different time intervals. By this way, sensors could be classified in different groups according to their activation patterns and the environment in which they are located through clustering processes and using graph convolutional networks. This study reveals that there is a close relationship between the activity pattern of the pedestrians’ and the type of environment sensors that collect pedestrians’ data are located. By this way, institutions could alleviate a great amount of effort needed to ensure safe and energy efficient urban areas, only knowing the typology of buildings of an urban zone." @default.
- W4226228051 created "2022-05-05" @default.
- W4226228051 creator A5029126384 @default.
- W4226228051 creator A5043871017 @default.
- W4226228051 creator A5064437971 @default.
- W4226228051 creator A5085098646 @default.
- W4226228051 date "2022-01-01" @default.
- W4226228051 modified "2023-10-06" @default.
- W4226228051 title "Graph based learning for building prediction in Smart Cities" @default.
- W4226228051 cites W122475987 @default.
- W4226228051 cites W2134576786 @default.
- W4226228051 cites W2914487400 @default.
- W4226228051 cites W2947969980 @default.
- W4226228051 cites W2973000317 @default.
- W4226228051 cites W3014919971 @default.
- W4226228051 cites W3049516694 @default.
- W4226228051 cites W3192950911 @default.
- W4226228051 cites W3200084005 @default.
- W4226228051 doi "https://doi.org/10.1109/access.2022.3169890" @default.
- W4226228051 hasPublicationYear "2022" @default.
- W4226228051 type Work @default.
- W4226228051 citedByCount "0" @default.
- W4226228051 crossrefType "journal-article" @default.
- W4226228051 hasAuthorship W4226228051A5029126384 @default.
- W4226228051 hasAuthorship W4226228051A5043871017 @default.
- W4226228051 hasAuthorship W4226228051A5064437971 @default.
- W4226228051 hasAuthorship W4226228051A5085098646 @default.
- W4226228051 hasBestOaLocation W42262280511 @default.
- W4226228051 hasConcept C103278499 @default.
- W4226228051 hasConcept C115961682 @default.
- W4226228051 hasConcept C124101348 @default.
- W4226228051 hasConcept C127413603 @default.
- W4226228051 hasConcept C132525143 @default.
- W4226228051 hasConcept C154945302 @default.
- W4226228051 hasConcept C164866538 @default.
- W4226228051 hasConcept C166957645 @default.
- W4226228051 hasConcept C199360897 @default.
- W4226228051 hasConcept C201995342 @default.
- W4226228051 hasConcept C205649164 @default.
- W4226228051 hasConcept C2780451532 @default.
- W4226228051 hasConcept C41008148 @default.
- W4226228051 hasConcept C73555534 @default.
- W4226228051 hasConcept C75795011 @default.
- W4226228051 hasConcept C80444323 @default.
- W4226228051 hasConceptScore W4226228051C103278499 @default.
- W4226228051 hasConceptScore W4226228051C115961682 @default.
- W4226228051 hasConceptScore W4226228051C124101348 @default.
- W4226228051 hasConceptScore W4226228051C127413603 @default.
- W4226228051 hasConceptScore W4226228051C132525143 @default.
- W4226228051 hasConceptScore W4226228051C154945302 @default.
- W4226228051 hasConceptScore W4226228051C164866538 @default.
- W4226228051 hasConceptScore W4226228051C166957645 @default.
- W4226228051 hasConceptScore W4226228051C199360897 @default.
- W4226228051 hasConceptScore W4226228051C201995342 @default.
- W4226228051 hasConceptScore W4226228051C205649164 @default.
- W4226228051 hasConceptScore W4226228051C2780451532 @default.
- W4226228051 hasConceptScore W4226228051C41008148 @default.
- W4226228051 hasConceptScore W4226228051C73555534 @default.
- W4226228051 hasConceptScore W4226228051C75795011 @default.
- W4226228051 hasConceptScore W4226228051C80444323 @default.
- W4226228051 hasLocation W42262280511 @default.
- W4226228051 hasLocation W42262280512 @default.
- W4226228051 hasOpenAccess W4226228051 @default.
- W4226228051 hasPrimaryLocation W42262280511 @default.
- W4226228051 hasRelatedWork W1457719682 @default.
- W4226228051 hasRelatedWork W2081647779 @default.
- W4226228051 hasRelatedWork W2380798983 @default.
- W4226228051 hasRelatedWork W2610866548 @default.
- W4226228051 hasRelatedWork W2762277149 @default.
- W4226228051 hasRelatedWork W2888523397 @default.
- W4226228051 hasRelatedWork W2908462829 @default.
- W4226228051 hasRelatedWork W2927555317 @default.
- W4226228051 hasRelatedWork W3027751302 @default.
- W4226228051 hasRelatedWork W4312820490 @default.
- W4226228051 hasVolume "10" @default.
- W4226228051 isParatext "false" @default.
- W4226228051 isRetracted "false" @default.
- W4226228051 workType "article" @default.