Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226242806> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4226242806 endingPage "1575" @default.
- W4226242806 startingPage "1565" @default.
- W4226242806 abstract "Abstract Effective monitoring of microalgae growth is crucial for environmental observation, while the applications of this monitoring could also be expanded to commercial and research-focused microalgae cultivation. Currently, the distinctive optical properties of different microalgae groups are targeted for monitoring. Since different microalgae can grow together, their spectral signals are mixed with ambient properties, making estimations of species biomasses a challenging task. In this study, we cultured five different microalgae and monitored their growth with a mobile spectral imager in three separate experiments. We trained and validated a one-dimensional convolution neural network by introducing absorbance spectra of the cultured microalgae and simulated pairwise mixtures of them. We then tested the model with samples of microalgae (monocultures and their pairwise mixtures) that were not part of the training or validation data. The convolution neural network classified microalgae accurately in the monocultures (test accuracy = 95%, SD = 4) and in the pairwise mixtures (test accuracy = 100%, SD = 0). Median prediction errors for biomasses were 17% (mean = 22%, SD = 18) for the monocultures and 17% (mean 24%, SD = 28) for the pairwise mixtures. As the spectral camera produced spatial information of the imaged target, we also demonstrated here the spatial distribution of microalgae biomass by applying the model across 5 × 5 pixel areas of the spectral images. The results of this study encourage the application of a one-dimensional convolution neural network to solve classification, regression, and distribution problems related to microalgae observation, simultaneously." @default.
- W4226242806 created "2022-05-05" @default.
- W4226242806 creator A5013773185 @default.
- W4226242806 creator A5019965204 @default.
- W4226242806 creator A5029725535 @default.
- W4226242806 creator A5032333213 @default.
- W4226242806 creator A5048380706 @default.
- W4226242806 date "2022-04-13" @default.
- W4226242806 modified "2023-10-16" @default.
- W4226242806 title "Assessment of microalgae species, biomass, and distribution from spectral images using a convolution neural network" @default.
- W4226242806 cites W1989184566 @default.
- W4226242806 cites W2042913559 @default.
- W4226242806 cites W2069017003 @default.
- W4226242806 cites W2079493774 @default.
- W4226242806 cites W2081046435 @default.
- W4226242806 cites W2083778953 @default.
- W4226242806 cites W2094170602 @default.
- W4226242806 cites W2101794035 @default.
- W4226242806 cites W2101916516 @default.
- W4226242806 cites W2125570117 @default.
- W4226242806 cites W2142618108 @default.
- W4226242806 cites W2617056706 @default.
- W4226242806 cites W3004986568 @default.
- W4226242806 cites W3023109392 @default.
- W4226242806 cites W3045776219 @default.
- W4226242806 cites W3085514672 @default.
- W4226242806 cites W3119761280 @default.
- W4226242806 cites W3122581312 @default.
- W4226242806 cites W3128824982 @default.
- W4226242806 cites W3133424649 @default.
- W4226242806 cites W3133516698 @default.
- W4226242806 cites W4210632244 @default.
- W4226242806 doi "https://doi.org/10.1007/s10811-022-02735-w" @default.
- W4226242806 hasPublicationYear "2022" @default.
- W4226242806 type Work @default.
- W4226242806 citedByCount "6" @default.
- W4226242806 countsByYear W42262428062023 @default.
- W4226242806 crossrefType "journal-article" @default.
- W4226242806 hasAuthorship W4226242806A5013773185 @default.
- W4226242806 hasAuthorship W4226242806A5019965204 @default.
- W4226242806 hasAuthorship W4226242806A5029725535 @default.
- W4226242806 hasAuthorship W4226242806A5032333213 @default.
- W4226242806 hasAuthorship W4226242806A5048380706 @default.
- W4226242806 hasBestOaLocation W42262428061 @default.
- W4226242806 hasConcept C115540264 @default.
- W4226242806 hasConcept C127313418 @default.
- W4226242806 hasConcept C153180895 @default.
- W4226242806 hasConcept C154945302 @default.
- W4226242806 hasConcept C157005057 @default.
- W4226242806 hasConcept C159078339 @default.
- W4226242806 hasConcept C184898388 @default.
- W4226242806 hasConcept C186060115 @default.
- W4226242806 hasConcept C18903297 @default.
- W4226242806 hasConcept C33923547 @default.
- W4226242806 hasConcept C39432304 @default.
- W4226242806 hasConcept C41008148 @default.
- W4226242806 hasConcept C45347329 @default.
- W4226242806 hasConcept C50644808 @default.
- W4226242806 hasConcept C62649853 @default.
- W4226242806 hasConcept C86803240 @default.
- W4226242806 hasConceptScore W4226242806C115540264 @default.
- W4226242806 hasConceptScore W4226242806C127313418 @default.
- W4226242806 hasConceptScore W4226242806C153180895 @default.
- W4226242806 hasConceptScore W4226242806C154945302 @default.
- W4226242806 hasConceptScore W4226242806C157005057 @default.
- W4226242806 hasConceptScore W4226242806C159078339 @default.
- W4226242806 hasConceptScore W4226242806C184898388 @default.
- W4226242806 hasConceptScore W4226242806C186060115 @default.
- W4226242806 hasConceptScore W4226242806C18903297 @default.
- W4226242806 hasConceptScore W4226242806C33923547 @default.
- W4226242806 hasConceptScore W4226242806C39432304 @default.
- W4226242806 hasConceptScore W4226242806C41008148 @default.
- W4226242806 hasConceptScore W4226242806C45347329 @default.
- W4226242806 hasConceptScore W4226242806C50644808 @default.
- W4226242806 hasConceptScore W4226242806C62649853 @default.
- W4226242806 hasConceptScore W4226242806C86803240 @default.
- W4226242806 hasFunder F4320321108 @default.
- W4226242806 hasFunder F4320323168 @default.
- W4226242806 hasIssue "3" @default.
- W4226242806 hasLocation W42262428061 @default.
- W4226242806 hasLocation W42262428062 @default.
- W4226242806 hasOpenAccess W4226242806 @default.
- W4226242806 hasPrimaryLocation W42262428061 @default.
- W4226242806 hasRelatedWork W2028628118 @default.
- W4226242806 hasRelatedWork W2083270190 @default.
- W4226242806 hasRelatedWork W2385371209 @default.
- W4226242806 hasRelatedWork W2899084033 @default.
- W4226242806 hasRelatedWork W2948825694 @default.
- W4226242806 hasRelatedWork W2998323711 @default.
- W4226242806 hasRelatedWork W3033828522 @default.
- W4226242806 hasRelatedWork W3173596272 @default.
- W4226242806 hasRelatedWork W4226242806 @default.
- W4226242806 hasRelatedWork W1991437568 @default.
- W4226242806 hasVolume "34" @default.
- W4226242806 isParatext "false" @default.
- W4226242806 isRetracted "false" @default.
- W4226242806 workType "article" @default.