Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226246548> ?p ?o ?g. }
- W4226246548 endingPage "9465" @default.
- W4226246548 startingPage "9452" @default.
- W4226246548 abstract "Inhibitory synaptic mechanisms oppose epileptic network activity in the brain. The breakdown in this inhibitory restraint and propagation of seizure activity has been linked to the overwhelming of feedforward inhibition, which is provided in large part by parvalbumin-expressing (PV) interneurons in the cortex. The underlying cellular processes therefore represent potential targets for understanding and preventing the propagation of seizure activity. Here we use an optogenetic strategy to test the hypothesis that depolarization block in PV interneurons is a significant factor during the loss of inhibitory restraint. Depolarization block results from the inactivation of voltage-gated sodium channels and leads to impaired action potential firing. We used focal NMDA stimulation to elicit reproducible epileptiform discharges in hippocampal organotypic brain slices from male and female mice and combined this with targeted recordings from defined neuronal populations. Simultaneous patch-clamp recordings from PV interneurons and pyramidal neurons revealed epileptiform activity that was associated with an overwhelming of inhibitory synaptic mechanisms and the emergence of a partial, and then complete, depolarization block in PV interneurons. To counteract this depolarization block, we developed protocols for eliciting pulsed membrane hyperpolarization via the inhibitory opsin, archaerhodopsin. This optical approach was effective in counteracting cumulative inactivation of voltage-gated channels, maintaining PV interneuron action potential firing properties during the inhibitory restraint period, and reducing the probability of initiating epileptiform activity. These experiments support the idea that depolarization block is a point of weakness in feedforward inhibitory synaptic mechanisms and represents a target for preventing the initiation and spread of seizure activity. <b>SIGNIFICANCE STATEMENT</b> GABA<sub>A</sub> receptor-mediated synaptic transmission opposes seizure activity by establishing an inhibitory restraint against spreading excitation. Parvalbumin-expressing (PV) interneurons contribute significantly to this inhibitory restraint, but it has been suggested that these cells are overwhelmed as they enter a state of “depolarization block.” Here we test the importance of this process by devising an optogenetic strategy to selectively relieve depolarization block in PV interneurons. By inducing brief membrane hyperpolarization, we show that it is possible to reduce depolarization block in PV interneurons, maintain their action potential firing in the face of strong excitation, and disrupt epileptiform activity in an <i>in vitro</i> model. This represents a proof of principle that targeting rate-limiting processes can strengthen the inhibitory restraint of epileptiform activity." @default.
- W4226246548 created "2022-05-05" @default.
- W4226246548 creator A5032933053 @default.
- W4226246548 creator A5033403172 @default.
- W4226246548 creator A5091311636 @default.
- W4226246548 date "2021-10-05" @default.
- W4226246548 modified "2023-10-18" @default.
- W4226246548 title "Disrupting Epileptiform Activity by Preventing Parvalbumin Interneuron Depolarization Block" @default.
- W4226246548 cites W1489513029 @default.
- W4226246548 cites W1494971105 @default.
- W4226246548 cites W1497716686 @default.
- W4226246548 cites W1522903379 @default.
- W4226246548 cites W1536319037 @default.
- W4226246548 cites W1566057978 @default.
- W4226246548 cites W1624401920 @default.
- W4226246548 cites W1912996233 @default.
- W4226246548 cites W1965625137 @default.
- W4226246548 cites W1968380321 @default.
- W4226246548 cites W1968648335 @default.
- W4226246548 cites W1970604942 @default.
- W4226246548 cites W1982088031 @default.
- W4226246548 cites W1984436229 @default.
- W4226246548 cites W1985940938 @default.
- W4226246548 cites W1988764473 @default.
- W4226246548 cites W1992147695 @default.
- W4226246548 cites W2013927030 @default.
- W4226246548 cites W2021213638 @default.
- W4226246548 cites W2024400089 @default.
- W4226246548 cites W2033144609 @default.
- W4226246548 cites W2033341118 @default.
- W4226246548 cites W2038969450 @default.
- W4226246548 cites W2040742860 @default.
- W4226246548 cites W2043358402 @default.
- W4226246548 cites W2044340299 @default.
- W4226246548 cites W2048882619 @default.
- W4226246548 cites W2050845257 @default.
- W4226246548 cites W2052394872 @default.
- W4226246548 cites W2056571308 @default.
- W4226246548 cites W2060589548 @default.
- W4226246548 cites W2061547023 @default.
- W4226246548 cites W2065811708 @default.
- W4226246548 cites W2077047903 @default.
- W4226246548 cites W2077377885 @default.
- W4226246548 cites W2079054696 @default.
- W4226246548 cites W2085716119 @default.
- W4226246548 cites W2086037194 @default.
- W4226246548 cites W2105003565 @default.
- W4226246548 cites W2112571943 @default.
- W4226246548 cites W2114502694 @default.
- W4226246548 cites W2131797361 @default.
- W4226246548 cites W2132124584 @default.
- W4226246548 cites W2148772496 @default.
- W4226246548 cites W2157874245 @default.
- W4226246548 cites W2167237768 @default.
- W4226246548 cites W2175272252 @default.
- W4226246548 cites W2324171895 @default.
- W4226246548 cites W2413930114 @default.
- W4226246548 cites W2518536765 @default.
- W4226246548 cites W2563958496 @default.
- W4226246548 cites W2588859019 @default.
- W4226246548 cites W2780510579 @default.
- W4226246548 cites W2918117004 @default.
- W4226246548 cites W2949312019 @default.
- W4226246548 cites W2950313546 @default.
- W4226246548 cites W2952426443 @default.
- W4226246548 cites W2968466306 @default.
- W4226246548 doi "https://doi.org/10.1523/jneurosci.1002-20.2021" @default.
- W4226246548 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34611025" @default.
- W4226246548 hasPublicationYear "2021" @default.
- W4226246548 type Work @default.
- W4226246548 citedByCount "17" @default.
- W4226246548 countsByYear W42262465482020 @default.
- W4226246548 countsByYear W42262465482021 @default.
- W4226246548 countsByYear W42262465482022 @default.
- W4226246548 countsByYear W42262465482023 @default.
- W4226246548 crossrefType "journal-article" @default.
- W4226246548 hasAuthorship W4226246548A5032933053 @default.
- W4226246548 hasAuthorship W4226246548A5033403172 @default.
- W4226246548 hasAuthorship W4226246548A5091311636 @default.
- W4226246548 hasBestOaLocation W42262465481 @default.
- W4226246548 hasConcept C112592302 @default.
- W4226246548 hasConcept C12554922 @default.
- W4226246548 hasConcept C131453863 @default.
- W4226246548 hasConcept C141547260 @default.
- W4226246548 hasConcept C169760540 @default.
- W4226246548 hasConcept C17077164 @default.
- W4226246548 hasConcept C178790620 @default.
- W4226246548 hasConcept C185592680 @default.
- W4226246548 hasConcept C24998067 @default.
- W4226246548 hasConcept C2776919887 @default.
- W4226246548 hasConcept C2779296341 @default.
- W4226246548 hasConcept C4141045 @default.
- W4226246548 hasConcept C50738837 @default.
- W4226246548 hasConcept C66974803 @default.
- W4226246548 hasConcept C83743174 @default.
- W4226246548 hasConcept C86803240 @default.
- W4226246548 hasConceptScore W4226246548C112592302 @default.
- W4226246548 hasConceptScore W4226246548C12554922 @default.