Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226253382> ?p ?o ?g. }
- W4226253382 endingPage "20" @default.
- W4226253382 startingPage "1" @default.
- W4226253382 abstract "Nowadays, due to the difficult acquisition of true labels, a semisupervised neural network has shown great potential for change detection (CD) in remote sensing images. However, most of the traditional semisupervised neural network detection frameworks are complex to train and require additional structural analysis, along with a fixed structure, lacking universality. In this article, a semisupervised adaptive ladder network (SSALN) for remote sensing image CD is proposed, which enables dual-input label-incremental architecture searching with a concise and variable structure. First, SSALN is suitable for CD from two remote sensing images of any type with the characteristic of minimal label dependency and automatic network structure adjustment. The network can generate more reliable pseudolabels through continuous iterations to help limited real labels exploit implicit information, identify the most effective network, and form the ascending network structure optimization. Second, the acquisition of pseudolabels is the fusion of semisupervised and unsupervised CD approaches, which ensures the multiperspective information supplement. Multiple CD maps are fused to generate labels for the next iteration, making the predicting more reliable. Finally, both homogenous images and heterogenous images are tested with experiments. Even if the detection object is switched, it can be well adaptive and compatible without manual modification of the network. Experimental results demonstrate that the proposed method can promote the flow of label information through structure searching and self-circulation in the ascending network optimization; thus, it has outstanding performance on tasks of remote sensing image CD." @default.
- W4226253382 created "2022-05-05" @default.
- W4226253382 creator A5006614329 @default.
- W4226253382 creator A5010706620 @default.
- W4226253382 creator A5049449184 @default.
- W4226253382 creator A5070400223 @default.
- W4226253382 creator A5086131621 @default.
- W4226253382 date "2022-01-01" @default.
- W4226253382 modified "2023-10-10" @default.
- W4226253382 title "Semisupervised Adaptive Ladder Network for Remote Sensing Image Change Detection" @default.
- W4226253382 cites W1920235975 @default.
- W4226253382 cites W1964069486 @default.
- W4226253382 cites W1965766334 @default.
- W4226253382 cites W1974524700 @default.
- W4226253382 cites W1978508564 @default.
- W4226253382 cites W1979061792 @default.
- W4226253382 cites W1989210494 @default.
- W4226253382 cites W1998595580 @default.
- W4226253382 cites W2003059629 @default.
- W4226253382 cites W2018175122 @default.
- W4226253382 cites W2027091505 @default.
- W4226253382 cites W2070813603 @default.
- W4226253382 cites W2097326416 @default.
- W4226253382 cites W2104374858 @default.
- W4226253382 cites W2118116484 @default.
- W4226253382 cites W2118246710 @default.
- W4226253382 cites W2119797204 @default.
- W4226253382 cites W2133059825 @default.
- W4226253382 cites W2147062276 @default.
- W4226253382 cites W2149939703 @default.
- W4226253382 cites W2170260354 @default.
- W4226253382 cites W2194775991 @default.
- W4226253382 cites W2221448138 @default.
- W4226253382 cites W2288628559 @default.
- W4226253382 cites W2338183708 @default.
- W4226253382 cites W2412588858 @default.
- W4226253382 cites W2475283175 @default.
- W4226253382 cites W2515895367 @default.
- W4226253382 cites W2516616494 @default.
- W4226253382 cites W2517579290 @default.
- W4226253382 cites W2560728632 @default.
- W4226253382 cites W2564140372 @default.
- W4226253382 cites W2587329506 @default.
- W4226253382 cites W2620569598 @default.
- W4226253382 cites W2766049824 @default.
- W4226253382 cites W2768975974 @default.
- W4226253382 cites W2770429219 @default.
- W4226253382 cites W2795547044 @default.
- W4226253382 cites W2811058982 @default.
- W4226253382 cites W2895222021 @default.
- W4226253382 cites W2898200895 @default.
- W4226253382 cites W2908048833 @default.
- W4226253382 cites W2910587630 @default.
- W4226253382 cites W2918277739 @default.
- W4226253382 cites W2934700355 @default.
- W4226253382 cites W2942855565 @default.
- W4226253382 cites W2943216879 @default.
- W4226253382 cites W2946163361 @default.
- W4226253382 cites W2956367483 @default.
- W4226253382 cites W2963821229 @default.
- W4226253382 cites W2963946985 @default.
- W4226253382 cites W2977355106 @default.
- W4226253382 cites W2978780657 @default.
- W4226253382 cites W2982987214 @default.
- W4226253382 cites W3004704948 @default.
- W4226253382 cites W3017051070 @default.
- W4226253382 cites W3032051057 @default.
- W4226253382 cites W3033600255 @default.
- W4226253382 cites W3034096603 @default.
- W4226253382 cites W3035335060 @default.
- W4226253382 cites W3039487145 @default.
- W4226253382 cites W3048064159 @default.
- W4226253382 cites W3049615702 @default.
- W4226253382 cites W3108293152 @default.
- W4226253382 cites W3132371805 @default.
- W4226253382 cites W3133966400 @default.
- W4226253382 cites W3183600011 @default.
- W4226253382 cites W3189451737 @default.
- W4226253382 cites W3206436626 @default.
- W4226253382 doi "https://doi.org/10.1109/tgrs.2022.3158741" @default.
- W4226253382 hasPublicationYear "2022" @default.
- W4226253382 type Work @default.
- W4226253382 citedByCount "54" @default.
- W4226253382 countsByYear W42262533822022 @default.
- W4226253382 countsByYear W42262533822023 @default.
- W4226253382 crossrefType "journal-article" @default.
- W4226253382 hasAuthorship W4226253382A5006614329 @default.
- W4226253382 hasAuthorship W4226253382A5010706620 @default.
- W4226253382 hasAuthorship W4226253382A5049449184 @default.
- W4226253382 hasAuthorship W4226253382A5070400223 @default.
- W4226253382 hasAuthorship W4226253382A5086131621 @default.
- W4226253382 hasConcept C115961682 @default.
- W4226253382 hasConcept C124101348 @default.
- W4226253382 hasConcept C153180895 @default.
- W4226253382 hasConcept C154945302 @default.
- W4226253382 hasConcept C165696696 @default.
- W4226253382 hasConcept C193415008 @default.
- W4226253382 hasConcept C31972630 @default.