Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226263885> ?p ?o ?g. }
- W4226263885 endingPage "1949" @default.
- W4226263885 startingPage "1933" @default.
- W4226263885 abstract "Weakly supervised learning applies image tag labels to train convolutional neural networks to locate defect. In industrial vision system, metal surface is anisotropic under light in all directions and it is inevitable to cause local overexposure due to the natural reflection of active strong light, especially on the cylindrical metal surface. In this paper, injector valve is taken as the representative of cylindrical metal workpieces. Since the variety and complexity of cylindrical metal workpiece defects which cause pixel-level annotation require expensive manual work. This problem hinders the application of convolutional neural network in industries. In order to solve these above challenges, this paper proposed an end-to-end weakly supervised learning framework named Integrated Residual Attention Convolutional Neural Network (IRA-CNN). IRA-CNN only uses image tag annotation for training and performs defect classification and defect segmentation simultaneously. Weakly supervised learning is achieved by extracting category-related spatial features from defect classification scores. IRA-CNN is composed of multiple Integrated Residual Attention Block (IRA-Block) as the feature extractor which improves the accuracy and achieves real-time performance. IRA-Block adds Integrated Attention Module (IAM) which includes channel attention submodule and spatial attention submodule. The channel attention submodule adaptively extracts the channel attention feature map to improve its bilateral nonlinearity and the robustness. IAM can be well integrated into the IRA-CNN makes the neural network suppress the interference of useless background area and highlight the defect area. Satisfied performance is achieved by the proposed method in our own defect dataset which could meet the requirements in the industrial process. Experimental results show that the method has good generalization ability. The accuracy of defect classification reaches 97.84% and the segmentation accuracy is significantly improved compared with the benchmark method." @default.
- W4226263885 created "2022-05-05" @default.
- W4226263885 creator A5060175893 @default.
- W4226263885 creator A5080308075 @default.
- W4226263885 creator A5082396860 @default.
- W4226263885 creator A5089306187 @default.
- W4226263885 date "2021-12-02" @default.
- W4226263885 modified "2023-09-29" @default.
- W4226263885 title "Surface defects inspection of cylindrical metal workpieces based on weakly supervised learning" @default.
- W4226263885 cites W1221208146 @default.
- W4226263885 cites W1901129140 @default.
- W4226263885 cites W2091250708 @default.
- W4226263885 cites W2092072518 @default.
- W4226263885 cites W2125629257 @default.
- W4226263885 cites W2133059825 @default.
- W4226263885 cites W2163352848 @default.
- W4226263885 cites W2178525996 @default.
- W4226263885 cites W2183341477 @default.
- W4226263885 cites W2295107390 @default.
- W4226263885 cites W2332733735 @default.
- W4226263885 cites W2552392885 @default.
- W4226263885 cites W2589306531 @default.
- W4226263885 cites W2752782242 @default.
- W4226263885 cites W2765793020 @default.
- W4226263885 cites W2794550100 @default.
- W4226263885 cites W2884585870 @default.
- W4226263885 cites W2890747436 @default.
- W4226263885 cites W2894469712 @default.
- W4226263885 cites W2897689496 @default.
- W4226263885 cites W2905203854 @default.
- W4226263885 cites W2920311927 @default.
- W4226263885 cites W2934618246 @default.
- W4226263885 cites W2953868242 @default.
- W4226263885 cites W2962858109 @default.
- W4226263885 cites W2963163009 @default.
- W4226263885 cites W2963466857 @default.
- W4226263885 cites W2964309882 @default.
- W4226263885 cites W3006730468 @default.
- W4226263885 cites W3009428189 @default.
- W4226263885 cites W3010618895 @default.
- W4226263885 cites W3023248403 @default.
- W4226263885 cites W3099620610 @default.
- W4226263885 cites W3104156061 @default.
- W4226263885 doi "https://doi.org/10.1007/s00170-021-08399-z" @default.
- W4226263885 hasPublicationYear "2021" @default.
- W4226263885 type Work @default.
- W4226263885 citedByCount "6" @default.
- W4226263885 countsByYear W42262638852022 @default.
- W4226263885 countsByYear W42262638852023 @default.
- W4226263885 crossrefType "journal-article" @default.
- W4226263885 hasAuthorship W4226263885A5060175893 @default.
- W4226263885 hasAuthorship W4226263885A5080308075 @default.
- W4226263885 hasAuthorship W4226263885A5082396860 @default.
- W4226263885 hasAuthorship W4226263885A5089306187 @default.
- W4226263885 hasBestOaLocation W42262638852 @default.
- W4226263885 hasConcept C104317684 @default.
- W4226263885 hasConcept C108583219 @default.
- W4226263885 hasConcept C11413529 @default.
- W4226263885 hasConcept C138885662 @default.
- W4226263885 hasConcept C153180895 @default.
- W4226263885 hasConcept C154945302 @default.
- W4226263885 hasConcept C155512373 @default.
- W4226263885 hasConcept C185592680 @default.
- W4226263885 hasConcept C2524010 @default.
- W4226263885 hasConcept C2776401178 @default.
- W4226263885 hasConcept C2777210771 @default.
- W4226263885 hasConcept C31972630 @default.
- W4226263885 hasConcept C33923547 @default.
- W4226263885 hasConcept C41008148 @default.
- W4226263885 hasConcept C41895202 @default.
- W4226263885 hasConcept C50644808 @default.
- W4226263885 hasConcept C55493867 @default.
- W4226263885 hasConcept C63479239 @default.
- W4226263885 hasConcept C81363708 @default.
- W4226263885 hasConcept C89600930 @default.
- W4226263885 hasConceptScore W4226263885C104317684 @default.
- W4226263885 hasConceptScore W4226263885C108583219 @default.
- W4226263885 hasConceptScore W4226263885C11413529 @default.
- W4226263885 hasConceptScore W4226263885C138885662 @default.
- W4226263885 hasConceptScore W4226263885C153180895 @default.
- W4226263885 hasConceptScore W4226263885C154945302 @default.
- W4226263885 hasConceptScore W4226263885C155512373 @default.
- W4226263885 hasConceptScore W4226263885C185592680 @default.
- W4226263885 hasConceptScore W4226263885C2524010 @default.
- W4226263885 hasConceptScore W4226263885C2776401178 @default.
- W4226263885 hasConceptScore W4226263885C2777210771 @default.
- W4226263885 hasConceptScore W4226263885C31972630 @default.
- W4226263885 hasConceptScore W4226263885C33923547 @default.
- W4226263885 hasConceptScore W4226263885C41008148 @default.
- W4226263885 hasConceptScore W4226263885C41895202 @default.
- W4226263885 hasConceptScore W4226263885C50644808 @default.
- W4226263885 hasConceptScore W4226263885C55493867 @default.
- W4226263885 hasConceptScore W4226263885C63479239 @default.
- W4226263885 hasConceptScore W4226263885C81363708 @default.
- W4226263885 hasConceptScore W4226263885C89600930 @default.
- W4226263885 hasFunder F4320335581 @default.
- W4226263885 hasIssue "3-4" @default.
- W4226263885 hasLocation W42262638851 @default.