Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226267545> ?p ?o ?g. }
- W4226267545 endingPage "4235" @default.
- W4226267545 startingPage "4235" @default.
- W4226267545 abstract "Wind energy is one of the most promising alternates of fossil fuels because of its abundant availability, low cost, and pollution-free attributes. Wind potential estimation, wind forecasting, and effective wind-energy management are the critical factors in planning and managing wind farms connected to wind-pooling substations. Hence, this study proposes a hybrid framework-based approach for wind-resource estimation and forecasting, namely IGWO-SVR (improved grey wolf optimization method (IGWO)-support vector regression (SVR)) for a real-time power pooling substation. The wind resource assessment and behavioral wind analysis has been carried out with the proposed IGWO-SVR optimization method for hourly, daily, monthly, and annual cases using 40 years of ERA (European Center for Medium-Range Weather Forecast reanalysis) data along with the impact of the El Niño effect. First, wind reassessment is carried out considering the impact of El Niño, wind speed, power, pressure, and temperature of the selected site Radhapuram substation in Tamilnadu, India and reported extensively. In addition, statistical analysis and wind distribution fitting are performed to demonstrate the seasonal effect. Then the proposed model is adopted for wind speed forecasting based on the dataset. From the results, the proposed model offered the best assessment report and predicted the wind behavior with greater accuracy using evaluation metrics, namely root mean square error (RMSE), mean absolute error (MAE), and mean squared error (MSE). For short-term wind speed, power, and El Niño forecasting, IGWO-SVR optimization effectively outperforms other existing models. This method can be adapted effectively in any potential locations for wind resource assessment and forecasting needs for better renewable energy management by power utilities." @default.
- W4226267545 created "2022-05-05" @default.
- W4226267545 creator A5002710129 @default.
- W4226267545 creator A5014217942 @default.
- W4226267545 creator A5033065621 @default.
- W4226267545 creator A5073893600 @default.
- W4226267545 date "2022-04-02" @default.
- W4226267545 modified "2023-10-14" @default.
- W4226267545 title "A Framework-Based Wind Forecasting to Assess Wind Potential with Improved Grey Wolf Optimization and Support Vector Regression" @default.
- W4226267545 cites W1609200543 @default.
- W4226267545 cites W1985727987 @default.
- W4226267545 cites W2015195567 @default.
- W4226267545 cites W2021105285 @default.
- W4226267545 cites W2030168780 @default.
- W4226267545 cites W2030242308 @default.
- W4226267545 cites W2051795269 @default.
- W4226267545 cites W2061438946 @default.
- W4226267545 cites W2067847508 @default.
- W4226267545 cites W2081164294 @default.
- W4226267545 cites W2229291734 @default.
- W4226267545 cites W2443028834 @default.
- W4226267545 cites W2604987333 @default.
- W4226267545 cites W2732547529 @default.
- W4226267545 cites W2770562103 @default.
- W4226267545 cites W2785844753 @default.
- W4226267545 cites W2809594591 @default.
- W4226267545 cites W2894082330 @default.
- W4226267545 cites W2919195636 @default.
- W4226267545 cites W2922385964 @default.
- W4226267545 cites W2948384616 @default.
- W4226267545 cites W2954514515 @default.
- W4226267545 cites W2963374828 @default.
- W4226267545 cites W2963924023 @default.
- W4226267545 cites W2967561222 @default.
- W4226267545 cites W3016482975 @default.
- W4226267545 cites W3018944702 @default.
- W4226267545 cites W3034821790 @default.
- W4226267545 cites W3049718214 @default.
- W4226267545 cites W3132002239 @default.
- W4226267545 cites W3132365759 @default.
- W4226267545 cites W3137693508 @default.
- W4226267545 cites W3154722458 @default.
- W4226267545 cites W3180975163 @default.
- W4226267545 cites W3206848911 @default.
- W4226267545 cites W4200304729 @default.
- W4226267545 doi "https://doi.org/10.3390/su14074235" @default.
- W4226267545 hasPublicationYear "2022" @default.
- W4226267545 type Work @default.
- W4226267545 citedByCount "7" @default.
- W4226267545 countsByYear W42262675452022 @default.
- W4226267545 countsByYear W42262675452023 @default.
- W4226267545 crossrefType "journal-article" @default.
- W4226267545 hasAuthorship W4226267545A5002710129 @default.
- W4226267545 hasAuthorship W4226267545A5014217942 @default.
- W4226267545 hasAuthorship W4226267545A5033065621 @default.
- W4226267545 hasAuthorship W4226267545A5073893600 @default.
- W4226267545 hasBestOaLocation W42262675451 @default.
- W4226267545 hasConcept C105795698 @default.
- W4226267545 hasConcept C107775477 @default.
- W4226267545 hasConcept C119599485 @default.
- W4226267545 hasConcept C119857082 @default.
- W4226267545 hasConcept C121332964 @default.
- W4226267545 hasConcept C12267149 @default.
- W4226267545 hasConcept C127413603 @default.
- W4226267545 hasConcept C139945424 @default.
- W4226267545 hasConcept C146978453 @default.
- W4226267545 hasConcept C153294291 @default.
- W4226267545 hasConcept C154945302 @default.
- W4226267545 hasConcept C161067210 @default.
- W4226267545 hasConcept C163258240 @default.
- W4226267545 hasConcept C204323151 @default.
- W4226267545 hasConcept C205649164 @default.
- W4226267545 hasConcept C2781084341 @default.
- W4226267545 hasConcept C33923547 @default.
- W4226267545 hasConcept C39432304 @default.
- W4226267545 hasConcept C41008148 @default.
- W4226267545 hasConcept C62520636 @default.
- W4226267545 hasConcept C70437156 @default.
- W4226267545 hasConcept C78600449 @default.
- W4226267545 hasConcept C89227174 @default.
- W4226267545 hasConceptScore W4226267545C105795698 @default.
- W4226267545 hasConceptScore W4226267545C107775477 @default.
- W4226267545 hasConceptScore W4226267545C119599485 @default.
- W4226267545 hasConceptScore W4226267545C119857082 @default.
- W4226267545 hasConceptScore W4226267545C121332964 @default.
- W4226267545 hasConceptScore W4226267545C12267149 @default.
- W4226267545 hasConceptScore W4226267545C127413603 @default.
- W4226267545 hasConceptScore W4226267545C139945424 @default.
- W4226267545 hasConceptScore W4226267545C146978453 @default.
- W4226267545 hasConceptScore W4226267545C153294291 @default.
- W4226267545 hasConceptScore W4226267545C154945302 @default.
- W4226267545 hasConceptScore W4226267545C161067210 @default.
- W4226267545 hasConceptScore W4226267545C163258240 @default.
- W4226267545 hasConceptScore W4226267545C204323151 @default.
- W4226267545 hasConceptScore W4226267545C205649164 @default.
- W4226267545 hasConceptScore W4226267545C2781084341 @default.
- W4226267545 hasConceptScore W4226267545C33923547 @default.
- W4226267545 hasConceptScore W4226267545C39432304 @default.