Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226278344> ?p ?o ?g. }
- W4226278344 endingPage "1233" @default.
- W4226278344 startingPage "1233" @default.
- W4226278344 abstract "Nowadays, problems related with solid waste management become a challenge for most countries due to the rising generation of waste, related environmental issues, and associated costs of produced wastes. Effective waste management systems at different geographic levels require accurate forecasting of future waste generation. In this work, we investigate how open-access data, such as provided from the Organisation for Economic Co-operation and Development (OECD), can be used for the analysis of waste data. The main idea of this study is finding the links between socio-economic and demographic variables that determine the amounts of types of solid wastes produced by countries. This would make it possible to accurately predict at the country level the waste production and determine the requirements for the development of effective waste management strategies. In particular, we use several machine learning data regression (Support Vector, Gradient Boosting, and Random Forest) and clustering models (k-means) to respectively predict waste production for OECD countries along years and also to perform clustering among these countries according to similar characteristics. The main contributions of our work are: (1) waste analysis at the OECD country-level to compare and cluster countries according to similar waste features predicted; (2) the detection of most relevant features for prediction models; and (3) the comparison between several regression models with respect to accuracy in predictions. Coefficient of determination (R2), Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE), respectively, are used as indices of the efficiency of the developed models. Our experiments have shown that some data pre-processings on the OECD data are an essential stage required in the analysis; that Random Forest Regressor (RFR) produced the best prediction results over the dataset; and that these results are highly influenced by the quality of available socio-economic data. In particular, the RFR model exhibited the highest accuracy in predictions for most waste types. For example, for “municipal” waste, it produced, respectively, R2 = 1 and MAPE=4.31 global error values for the test set; and for “household” waste, it, respectively, produced R2 = 1 and MAPE=3.03. Our results indicate that the considered models (and specially RFR) all are effective in predicting the amount of produced wastes derived from input data for the considered countries." @default.
- W4226278344 created "2022-05-05" @default.
- W4226278344 creator A5028327109 @default.
- W4226278344 creator A5046907101 @default.
- W4226278344 creator A5060281689 @default.
- W4226278344 creator A5068556199 @default.
- W4226278344 date "2022-01-21" @default.
- W4226278344 modified "2023-10-14" @default.
- W4226278344 title "Solid Waste Analysis Using Open-Access Socio-Economic Data" @default.
- W4226278344 cites W1983865151 @default.
- W4226278344 cites W2029513327 @default.
- W4226278344 cites W2069308073 @default.
- W4226278344 cites W2073524950 @default.
- W4226278344 cites W2080235268 @default.
- W4226278344 cites W2089851055 @default.
- W4226278344 cites W2093619595 @default.
- W4226278344 cites W2412393926 @default.
- W4226278344 cites W2472688968 @default.
- W4226278344 cites W2499563945 @default.
- W4226278344 cites W2790947208 @default.
- W4226278344 cites W2950417126 @default.
- W4226278344 cites W2986539977 @default.
- W4226278344 cites W3024048126 @default.
- W4226278344 cites W3044183102 @default.
- W4226278344 cites W3084731547 @default.
- W4226278344 cites W3101719807 @default.
- W4226278344 cites W3108182519 @default.
- W4226278344 cites W3159070557 @default.
- W4226278344 cites W3191040420 @default.
- W4226278344 cites W3212797097 @default.
- W4226278344 cites W4242972754 @default.
- W4226278344 cites W4251235113 @default.
- W4226278344 doi "https://doi.org/10.3390/su14031233" @default.
- W4226278344 hasPublicationYear "2022" @default.
- W4226278344 type Work @default.
- W4226278344 citedByCount "4" @default.
- W4226278344 countsByYear W42262783442022 @default.
- W4226278344 countsByYear W42262783442023 @default.
- W4226278344 crossrefType "journal-article" @default.
- W4226278344 hasAuthorship W4226278344A5028327109 @default.
- W4226278344 hasAuthorship W4226278344A5046907101 @default.
- W4226278344 hasAuthorship W4226278344A5060281689 @default.
- W4226278344 hasAuthorship W4226278344A5068556199 @default.
- W4226278344 hasBestOaLocation W42262783441 @default.
- W4226278344 hasConcept C105795698 @default.
- W4226278344 hasConcept C119857082 @default.
- W4226278344 hasConcept C127413603 @default.
- W4226278344 hasConcept C134560507 @default.
- W4226278344 hasConcept C139719470 @default.
- W4226278344 hasConcept C139945424 @default.
- W4226278344 hasConcept C149782125 @default.
- W4226278344 hasConcept C150217764 @default.
- W4226278344 hasConcept C152877465 @default.
- W4226278344 hasConcept C162324750 @default.
- W4226278344 hasConcept C169258074 @default.
- W4226278344 hasConcept C18762648 @default.
- W4226278344 hasConcept C2778348673 @default.
- W4226278344 hasConcept C33923547 @default.
- W4226278344 hasConcept C41008148 @default.
- W4226278344 hasConcept C548081761 @default.
- W4226278344 hasConcept C70153297 @default.
- W4226278344 hasConcept C73555534 @default.
- W4226278344 hasConcept C75779659 @default.
- W4226278344 hasConcept C78519656 @default.
- W4226278344 hasConceptScore W4226278344C105795698 @default.
- W4226278344 hasConceptScore W4226278344C119857082 @default.
- W4226278344 hasConceptScore W4226278344C127413603 @default.
- W4226278344 hasConceptScore W4226278344C134560507 @default.
- W4226278344 hasConceptScore W4226278344C139719470 @default.
- W4226278344 hasConceptScore W4226278344C139945424 @default.
- W4226278344 hasConceptScore W4226278344C149782125 @default.
- W4226278344 hasConceptScore W4226278344C150217764 @default.
- W4226278344 hasConceptScore W4226278344C152877465 @default.
- W4226278344 hasConceptScore W4226278344C162324750 @default.
- W4226278344 hasConceptScore W4226278344C169258074 @default.
- W4226278344 hasConceptScore W4226278344C18762648 @default.
- W4226278344 hasConceptScore W4226278344C2778348673 @default.
- W4226278344 hasConceptScore W4226278344C33923547 @default.
- W4226278344 hasConceptScore W4226278344C41008148 @default.
- W4226278344 hasConceptScore W4226278344C548081761 @default.
- W4226278344 hasConceptScore W4226278344C70153297 @default.
- W4226278344 hasConceptScore W4226278344C73555534 @default.
- W4226278344 hasConceptScore W4226278344C75779659 @default.
- W4226278344 hasConceptScore W4226278344C78519656 @default.
- W4226278344 hasIssue "3" @default.
- W4226278344 hasLocation W42262783441 @default.
- W4226278344 hasLocation W42262783442 @default.
- W4226278344 hasLocation W42262783443 @default.
- W4226278344 hasOpenAccess W4226278344 @default.
- W4226278344 hasPrimaryLocation W42262783441 @default.
- W4226278344 hasRelatedWork W2765137096 @default.
- W4226278344 hasRelatedWork W3045793201 @default.
- W4226278344 hasRelatedWork W3177321454 @default.
- W4226278344 hasRelatedWork W4285733885 @default.
- W4226278344 hasRelatedWork W4293203128 @default.
- W4226278344 hasRelatedWork W4309047726 @default.
- W4226278344 hasRelatedWork W4318147482 @default.
- W4226278344 hasRelatedWork W4361282535 @default.