Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226282017> ?p ?o ?g. }
- W4226282017 endingPage "123955" @default.
- W4226282017 startingPage "123955" @default.
- W4226282017 abstract "• LN 2 freezing and freeze–thaw can damage the pore and fracture structure. • LN 2 freezing and freeze–thaw can reduce the P-wave velocity of coal sample. • The expansion process of pores and fractures was analyzed by MRI. • The mechanical property is analyzed by acoustic emission and energy evolution. Liquid nitrogen (LN 2 ) fracturing technology is of interest to the petroleum/energy industry because of its limited water consumption and non-pollution compared with conventional hydraulic fracturing. Currently, the usefulness of LN 2 fracturing as a new reservoir stimulation technology in coal seams is not yet clear. To investigate the effect of LN 2 freezing and freeze–thaw on the mechanical properties of coal, the expansion of pores and fractures of coal samples during LN 2 freeze–thaw was analyzed by MRI. Uniaxial compression and acoustic emission tests were also carried out on the coal samples for each type of LN 2 freezing condition. The P-wave velocity, uniaxial compressive strength, acoustic emission, and energy evolution characteristics of coal samples for different LN 2 freezing conditions were analyzed, and the mechanisms causing damage during LN 2 freeze–thaw were discussed. The results show that: (1) LN 2 freezing and freeze–thaw can damage the pore and fracture structure of the coal samples, causing the expansion and connection of the original fracture, which lead to the decrease in the P-wave velocity and the relative attenuation rate of the coal samples. (2) The bearing capacity of the coal samples decreases after LN 2 freezing and freeze–thaw, causing a decrease in the uniaxial compressive strength of the coal samples. (3) LN 2 freezing and freeze–thaw do not change the period of acoustic emission events of coal samples during loading during uniaxial loading. The maximum acoustic emission ring counts and accumulative acoustic emission ring counts of the coal samples decrease with an increase in the LN 2 freezing time and the freeze–thaw cycle. (4) LN 2 freezing and freeze–thaw can initially damage the coal sample, reducing the total energy and elastic energy of the coal sample. The higher the degree of initial damage, the lower the secondary damage required for the failure of the coal sample, which results in a decrease of dissipated energy." @default.
- W4226282017 created "2022-05-05" @default.
- W4226282017 creator A5004030543 @default.
- W4226282017 creator A5016385629 @default.
- W4226282017 creator A5021295407 @default.
- W4226282017 creator A5030984653 @default.
- W4226282017 creator A5046670716 @default.
- W4226282017 creator A5086281059 @default.
- W4226282017 date "2022-08-01" @default.
- W4226282017 modified "2023-10-16" @default.
- W4226282017 title "Experimental study on mechanical properties, acoustic emission characteristics and energy evolution of coal samples after freezing with liquid nitrogen" @default.
- W4226282017 cites W1836080368 @default.
- W4226282017 cites W1971589405 @default.
- W4226282017 cites W2000220454 @default.
- W4226282017 cites W2000304703 @default.
- W4226282017 cites W2003791213 @default.
- W4226282017 cites W2027426146 @default.
- W4226282017 cites W2028218966 @default.
- W4226282017 cites W2033147897 @default.
- W4226282017 cites W2035287379 @default.
- W4226282017 cites W2036798831 @default.
- W4226282017 cites W2039910704 @default.
- W4226282017 cites W2048462006 @default.
- W4226282017 cites W2086021745 @default.
- W4226282017 cites W2220406035 @default.
- W4226282017 cites W2293036348 @default.
- W4226282017 cites W2434380008 @default.
- W4226282017 cites W2512136147 @default.
- W4226282017 cites W2531154849 @default.
- W4226282017 cites W2568389952 @default.
- W4226282017 cites W2594917321 @default.
- W4226282017 cites W2600929174 @default.
- W4226282017 cites W2625444509 @default.
- W4226282017 cites W2898588546 @default.
- W4226282017 cites W2905410483 @default.
- W4226282017 cites W2946827805 @default.
- W4226282017 cites W2965279303 @default.
- W4226282017 cites W2980977786 @default.
- W4226282017 cites W3000058942 @default.
- W4226282017 cites W3001161883 @default.
- W4226282017 cites W3092714747 @default.
- W4226282017 cites W3197047193 @default.
- W4226282017 cites W3210207724 @default.
- W4226282017 doi "https://doi.org/10.1016/j.fuel.2022.123955" @default.
- W4226282017 hasPublicationYear "2022" @default.
- W4226282017 type Work @default.
- W4226282017 citedByCount "18" @default.
- W4226282017 countsByYear W42262820172022 @default.
- W4226282017 countsByYear W42262820172023 @default.
- W4226282017 crossrefType "journal-article" @default.
- W4226282017 hasAuthorship W4226282017A5004030543 @default.
- W4226282017 hasAuthorship W4226282017A5016385629 @default.
- W4226282017 hasAuthorship W4226282017A5021295407 @default.
- W4226282017 hasAuthorship W4226282017A5030984653 @default.
- W4226282017 hasAuthorship W4226282017A5046670716 @default.
- W4226282017 hasAuthorship W4226282017A5086281059 @default.
- W4226282017 hasConcept C107872376 @default.
- W4226282017 hasConcept C108939769 @default.
- W4226282017 hasConcept C113196181 @default.
- W4226282017 hasConcept C127413603 @default.
- W4226282017 hasConcept C159467904 @default.
- W4226282017 hasConcept C159985019 @default.
- W4226282017 hasConcept C174598085 @default.
- W4226282017 hasConcept C178790620 @default.
- W4226282017 hasConcept C185592680 @default.
- W4226282017 hasConcept C192562407 @default.
- W4226282017 hasConcept C199289684 @default.
- W4226282017 hasConcept C39432304 @default.
- W4226282017 hasConcept C42360764 @default.
- W4226282017 hasConcept C518851703 @default.
- W4226282017 hasConcept C537208039 @default.
- W4226282017 hasConceptScore W4226282017C107872376 @default.
- W4226282017 hasConceptScore W4226282017C108939769 @default.
- W4226282017 hasConceptScore W4226282017C113196181 @default.
- W4226282017 hasConceptScore W4226282017C127413603 @default.
- W4226282017 hasConceptScore W4226282017C159467904 @default.
- W4226282017 hasConceptScore W4226282017C159985019 @default.
- W4226282017 hasConceptScore W4226282017C174598085 @default.
- W4226282017 hasConceptScore W4226282017C178790620 @default.
- W4226282017 hasConceptScore W4226282017C185592680 @default.
- W4226282017 hasConceptScore W4226282017C192562407 @default.
- W4226282017 hasConceptScore W4226282017C199289684 @default.
- W4226282017 hasConceptScore W4226282017C39432304 @default.
- W4226282017 hasConceptScore W4226282017C42360764 @default.
- W4226282017 hasConceptScore W4226282017C518851703 @default.
- W4226282017 hasConceptScore W4226282017C537208039 @default.
- W4226282017 hasLocation W42262820171 @default.
- W4226282017 hasOpenAccess W4226282017 @default.
- W4226282017 hasPrimaryLocation W42262820171 @default.
- W4226282017 hasRelatedWork W2073712755 @default.
- W4226282017 hasRelatedWork W2356902689 @default.
- W4226282017 hasRelatedWork W2364941759 @default.
- W4226282017 hasRelatedWork W2388124678 @default.
- W4226282017 hasRelatedWork W2389091970 @default.
- W4226282017 hasRelatedWork W2899084033 @default.
- W4226282017 hasRelatedWork W4226282017 @default.
- W4226282017 hasRelatedWork W4233873706 @default.
- W4226282017 hasRelatedWork W4241948278 @default.