Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226287601> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W4226287601 endingPage "903" @default.
- W4226287601 startingPage "885" @default.
- W4226287601 abstract "We study a single product pricing problem with demand censoring in an offline data-driven setting. In this problem, a retailer has a finite amount of inventory and faces a random demand that is price sensitive in a linear fashion with unknown price sensitivity and base demand distribution. Any unsatisfied demand that exceeds the inventory level is lost and unobservable. We assume that the retailer has access to an offline data set consisting of triples of historical price, inventory level, and potentially censored sales quantity. The retailer’s objective is to use the offline data set to find an optimal price, maximizing his or her expected revenue with finite inventories. Because of demand censoring in the offline data, we show that the existence of near-optimal algorithms in a data-driven problem—which we call problem identifiability—is not always guaranteed. We develop a necessary and sufficient condition for problem identifiability by comparing the solutions to two distributionally robust optimization problems. We propose a novel data-driven algorithm that hedges against the distributional uncertainty arising from censored data, with provable finite-sample performance guarantees regardless of problem identifiability and offline data quality. Specifically, we prove that, for identifiable problems, the proposed algorithm is near-optimal and, for unidentifiable problems, its worst-case revenue loss approaches the best-achievable minimax revenue loss that any data-driven algorithm must incur. Numerical experiments demonstrate that our proposed algorithm is highly effective and significantly improves both the expected and worst-case revenues compared with three regression-based algorithms. This paper was accepted by J. George Shanthikumar, big data analytics. Funding: This work was supported by the MIT Data Science Laboratory. J. Bu was partially supported by a Hong Kong Polytechnic University Start-up Fund for New Recruits [Project ID P0039585]. Supplemental Material: Data and the online appendices are available at https://doi.org/10.1287/mnsc.2022.4382 ." @default.
- W4226287601 created "2022-05-05" @default.
- W4226287601 creator A5060993889 @default.
- W4226287601 creator A5071844184 @default.
- W4226287601 creator A5078130712 @default.
- W4226287601 date "2023-02-01" @default.
- W4226287601 modified "2023-10-01" @default.
- W4226287601 title "Offline Pricing and Demand Learning with Censored Data" @default.
- W4226287601 cites W1828651507 @default.
- W4226287601 cites W1972476693 @default.
- W4226287601 cites W1988896174 @default.
- W4226287601 cites W1999023905 @default.
- W4226287601 cites W2021380229 @default.
- W4226287601 cites W2032091434 @default.
- W4226287601 cites W2041638842 @default.
- W4226287601 cites W2056418346 @default.
- W4226287601 cites W2083972068 @default.
- W4226287601 cites W2090343757 @default.
- W4226287601 cites W2102236934 @default.
- W4226287601 cites W2139255721 @default.
- W4226287601 cites W2160172818 @default.
- W4226287601 cites W2323440614 @default.
- W4226287601 cites W2616265545 @default.
- W4226287601 cites W2778911205 @default.
- W4226287601 cites W2884330776 @default.
- W4226287601 cites W3026412630 @default.
- W4226287601 cites W3122167207 @default.
- W4226287601 cites W3122908781 @default.
- W4226287601 cites W3122984207 @default.
- W4226287601 cites W3123482145 @default.
- W4226287601 cites W3124225883 @default.
- W4226287601 cites W3147894994 @default.
- W4226287601 cites W4293241248 @default.
- W4226287601 doi "https://doi.org/10.1287/mnsc.2022.4382" @default.
- W4226287601 hasPublicationYear "2023" @default.
- W4226287601 type Work @default.
- W4226287601 citedByCount "3" @default.
- W4226287601 countsByYear W42262876012022 @default.
- W4226287601 countsByYear W42262876012023 @default.
- W4226287601 crossrefType "journal-article" @default.
- W4226287601 hasAuthorship W4226287601A5060993889 @default.
- W4226287601 hasAuthorship W4226287601A5071844184 @default.
- W4226287601 hasAuthorship W4226287601A5078130712 @default.
- W4226287601 hasBestOaLocation W42262876012 @default.
- W4226287601 hasConcept C10138342 @default.
- W4226287601 hasConcept C119857082 @default.
- W4226287601 hasConcept C122770356 @default.
- W4226287601 hasConcept C126255220 @default.
- W4226287601 hasConcept C137668524 @default.
- W4226287601 hasConcept C149728462 @default.
- W4226287601 hasConcept C149782125 @default.
- W4226287601 hasConcept C162324750 @default.
- W4226287601 hasConcept C175444787 @default.
- W4226287601 hasConcept C195487862 @default.
- W4226287601 hasConcept C2779391423 @default.
- W4226287601 hasConcept C2780695315 @default.
- W4226287601 hasConcept C33923547 @default.
- W4226287601 hasConcept C41008148 @default.
- W4226287601 hasConceptScore W4226287601C10138342 @default.
- W4226287601 hasConceptScore W4226287601C119857082 @default.
- W4226287601 hasConceptScore W4226287601C122770356 @default.
- W4226287601 hasConceptScore W4226287601C126255220 @default.
- W4226287601 hasConceptScore W4226287601C137668524 @default.
- W4226287601 hasConceptScore W4226287601C149728462 @default.
- W4226287601 hasConceptScore W4226287601C149782125 @default.
- W4226287601 hasConceptScore W4226287601C162324750 @default.
- W4226287601 hasConceptScore W4226287601C175444787 @default.
- W4226287601 hasConceptScore W4226287601C195487862 @default.
- W4226287601 hasConceptScore W4226287601C2779391423 @default.
- W4226287601 hasConceptScore W4226287601C2780695315 @default.
- W4226287601 hasConceptScore W4226287601C33923547 @default.
- W4226287601 hasConceptScore W4226287601C41008148 @default.
- W4226287601 hasIssue "2" @default.
- W4226287601 hasLocation W42262876011 @default.
- W4226287601 hasLocation W42262876012 @default.
- W4226287601 hasOpenAccess W4226287601 @default.
- W4226287601 hasPrimaryLocation W42262876011 @default.
- W4226287601 hasRelatedWork W1531266113 @default.
- W4226287601 hasRelatedWork W2050734361 @default.
- W4226287601 hasRelatedWork W2112118920 @default.
- W4226287601 hasRelatedWork W2277505692 @default.
- W4226287601 hasRelatedWork W2550078650 @default.
- W4226287601 hasRelatedWork W2948697569 @default.
- W4226287601 hasRelatedWork W3046904528 @default.
- W4226287601 hasRelatedWork W3123910144 @default.
- W4226287601 hasRelatedWork W3125557893 @default.
- W4226287601 hasRelatedWork W4226287601 @default.
- W4226287601 hasVolume "69" @default.
- W4226287601 isParatext "false" @default.
- W4226287601 isRetracted "false" @default.
- W4226287601 workType "article" @default.